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Abstract— We present new implementations of heuristic
algorithms for the solution of the multiobjective shortest path
problem, using a new graph structure specifically suited for
large scale road networks. We enhance the heuristics with
further optimizations and experimentally evaluate the
performance of our enhanced implementation on real world
road networks achieving 10 times better performance with
respect to the best previous study.

Index Terms—multiobjective shortest path problem, goal-
directed search, heuristic search, transportation networks

I.  INTRODUCTION

Multiobjective optimization is a key area attracting great
interest and intense studies in the last 60 years [4,5]. This
area studies decision making problems which operate on an
input of multiple conflicting objectives or criteria, trying to
determine their best possible combination. In such problems
there is no concept that captures a single optimal solution
but, rather, multiple solutions, each representing a different
tradeoff between the input objectives. These form the so
called Pareto set, or the set of non-dominated solutions of
the problem.

One core problem in this area is the multiobjective
shortest path problem, appearing in applications such as QoS
routing in communication networks, traffic equilibria, transport
optimization and route and itinerary planning [4,5,6,15]. It is
an extension of the single criterion shortest path problem
using a cost vector (instead of a scalar) per network edge.Even
though numerous efficient algorithms exist for the single
criter ion shortest path problem, the multiobjective
counterpart of the problem is much harder. In fact, it has been
shown to be NP-complete [6] (as indeed is the case with
almost all multiobjective optimization problems).

Two main approaches are followed in order to reduce the
computation effort for solving the multiobjective shortest
path problem; the first one uses approximation and computes
optimal solutions up to a certain factor [15]. Approximation
techniques do not necessarily yield exact solutions, but are
adequately fast to be used in practice [1]. The second approach
uses heuristic improvements to speed-up existing algorithms
[10, 14]. Such techniques yield exact solutions, but it is
considerably more difficult to achieve good performance.In
this work we focus on the latter approach, motivated by the
great demand in practical applications to achieve efficient
and exact multiobjective shortest paths. The currently best

heuristic algorithm for exact multiobjective shortest paths is
NAMOA* [10] in combination with the bounded TC heuristic
[16] as shown in [8]. This approach uses an extension of
Dijkstra’s algorithm [2] and A* search [7] to reduce the search
space (visited part of the underlying network), which is exact,
has very good performance and requires little or no
preprocessing at all.

In this work, we present a new implementation of
NAMOA* on a new graph structure [9] specifically suited for
large-scale networks. Our implementation is enhanced with
new heuristic optimizations that improve memory access and
space efficiency. We evaluate our implementation using the
same data sets as the best previous experimental study [8].
Our experimental results show a clear superiority of our
enhanced implementation over previous results (roughly 10
times faster) using a hardware platform that is about 30%
slower.

II. PRELIMINARIES

Let ),( EVG   be a directed graph. Each edge is

assigned with a cost vector  )w, . . . ,  ,w(wL k21 , where

k  is the number of different criteria. Let 'L,L  be two cost
vectors. We say that L  dominates 'L  if there is i , ki 1 ,

such that ii  w' w   and jj  w' w   for each kj 1 ,

ji  . Accordingly, in this case we say that  is dominated by.
Given two cost vectors , the sum of these is defined as . The
set of all non-dominated vectors is called Pareto Set.
A path  in  is a sequence of nodes   such that there is an edge
from each node to the next one in the sequence. The cost
label of the path is defined as:

,v)L(u...),uL(u)L(u,u)L(P iuv  211 .

For two given nodes s and t  in G , let Pst be the set of all s-t
paths. In the multiobjective shortest path problems we wish
to compute the Pareto set for Pst.

III. PACKED-MEMORY GRAPH STRUCTURE

A. Overview
For our implementation, we used the packed-memory

graph (PMG) structure, proposed in [9]. This is a highly
optimized graph structure, part of a larger algorithmic
framework, specifically suited for large scale networks. It
provides dynamic memory management of the graph and thus
the ability to control the storing scheme of nodes and edges
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in memory for optimization purposes. It supports almost
optimal scanning of consecutive nodes and edges and can
incorporate dynamic changes in the graph layout in a matter
of µs.

Fig. 1.  An example graph.

B.Structure
The PMG structure consists of an array for storing the

nodes, in an arbitrary order, and two arrays for storing the
edges, one considering the edges as outgoing from the nodes
and one considering them as incoming to the nodes. The
storing order of the edges follows the order of their base
node in the node array. In the outgoing (incoming) edge array,
the edges are stored in sorted order by source (target) node.
Thus, all outgoing (incoming) edges of a node u lie in
consecutive cells in the outgoing (incoming) edge array. Each
node keeps pointers to the respective range of cells containing
its outgoing (incoming) edges in the outgoing (incoming)
edge array. Each outgoing (incoming) edge keeps a pointer
to its target (source) node and a pointer to its sibling incoming
(outgoing) edge.

Fig. 2. Packed-memory Graph Structure

Finally, all three arrays reserve more memory than they
need for their elements. The extra memory cells are evenly
distributed throughout the arrays forming holes in them,
which can then be used to efficiently add new elements. The
maintenance of these holes is carried out by the use of a
binary tree over each array which monitors the density of the

holes within certain intervals of the array and redistributes
the holes evenly when needed.An illustration of the PMG
structure, for the example graph of Figure 1, is shown in Figure
2.

C.  Internal Node Reordering
Given an arbitrary ordering of the nodes, the PMG can

store them in consecutive memory addresses in the same
order. This order can be changed at any time in an online
manner. This operation is called internal node reordering.
Clearly, any node reordering causes the edge arrays to be
reordered as well.The power of this operation stems from the
insight an algorithm might have about the sequence of its
memory accesses. Such an algorithm can configure the
ordering of the nodes in memory in such a way that will
increase the locality of references and read/write operations
will cause as few memory misses as possible.

D. Operations
The PMG structure can scan S consecutive nodes or

edges in )(SO  time and )/( BSO  memory transfers, where

B is the size of the block transferred between the memory
layers. Hence, during Dijkstra’s algorithm, it can access all
outgoing edges of a node very efficiently.
Insert/Delete operations are very efficient as well. Since there
exist holes in both the node and edge arrays, inserting an
element involves finding a hole near the desirable insertion
point and rearranging the elements in a small range around
the hole. This rearrangement not only makes room for the
new element but also keeps the elements ordered. The deletion
operation is very similar, deleting an element and then
rearranging the elements in a range around it. It is shown in
[9] that the time and memory of the update operations are
polylogarithmic in the size of the graph.

IV. MULTICRITERIA SHORTEST PATHS

In this section, we review the most important methods for
finding all Pareto-optimal solutions in the multiobjective
shortest path problem.

A. Multiobjective Dijkstra’s Algorithm
In order to find Pareto-optimal paths with respect to given

criteria and a given s-t query, an extension of Dijkstra’s
algorithm [11] can be applied. Each node keeps a list of labels
(cost vectors) containing an entry for each criterion and a
reference to its predecessor on the path. These labels
represent paths that are not dominated by any other label on
the node. During an iteration of the algorithm, the
lexicographically minimal label is extracted from the queue,
and the node u associated with it is processed. The process
starts with scanning all outgoing edges of u and updating
the labels on the neighboring nodes provided an update is
feasible. For each neighboring node v, a new label is created
representing the path to v through u. This label is then
compared to the existing list of labels of v, and is inserted in
the queue and the list of labels of v, only if it is not dominated



Full Paper

© 2012 ACEEE
DOI: 02.ICT.2012.3.

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

16

by any other label. Furthermore, previously existing labels of
v that are dominated by the newly computed label are
discarded.The algorithm stops when the queue is empty.
Then, the labels of t represent all non-dominated paths from
s to t. The paths can be reconstructed by following the
predecessor pointers of each label.

B. NAMOA* Algorithm
Proposed in [10], the NAMOA* algorithm incorporates

the A* search technique with the multiobjective Dijkstra’s
algorithm along with several optimizations.

The core s-t query is similar to the multiobjective Dijkstra’s
algorithm with some extensions. The main difference is that
the priority of a label in the queue is modified according to a

heuristic function k
t Vh : . This function gives a lower

bound estimate )(uht  for the cost of a path from a node u to
a target node t. By adding this heuristic function to the priority
of each generated label of a node, the search is pulled faster
towards the target. The tighter the lower bound is, the faster
the target is reached. Hence, different heuristic functions
yield different performances.

In Section IV.D we describe the heuristic functions used
for our evaluation.In order for the A* search extension to
have as large an effect as possible, more modifications have
been introduced to the core multiobjective Dijkstra’s algorithm
[10]. First, the list of labels on a node u are split into two sets,

)(uGop  and )(uGcl where the first contains the labels that
are also present in the queue, and the second contains the
rest. This way, when discarding a label from the list that is
also present in the queue, it is discarded from the queue as
well.

Moreover, as soon as the target node is reached through

a non-dominated path stP , this path gets recorded and the
search is pruned by it. On each iteration, when a label

representing a path suP  is extracted from the queue, a check
takes place; if the label representing  is dominated by the
label representing , then there can be no path to t consisting
of that is not dominated. Therefore, the label representing  is
discarded, and the search is pruned at this point.
It is clear that the fastest a first non-dominated path to t is
discovered, the earliest the search will be pruned. Hence, the
heuristic function that pulls the search towards the target is
a very important factor affecting the overall performance of
the algorithm.

C. Optimizations
We have incorporated our own optimizations in the

NAMOA* algorithm, mainly to increase the efficiency of the

memory accesses. First, we do not keep opG and clG  as
different entities on each node. Instead, we have combined
them into one list of labels, and have extended the actual
labels to contain a flag determining whether a particular label
is in the queue or not. This way, all labels of a node, either

open or closed, reside on consecutive memory addresses,
yielding less cache misses. Second, we keep a pointer on
each label, pointing to the predecessor node that generated
it. Thus, the predecessor graph, and all non-dominated paths
can be induced by following these predecessor pointers.
Third, we have made the following observation. Any label L
residing on a node u during an iteration of the algorithm

represents a currently non-dominated path suP . This path
might have been the prefix of more non-dominated paths

svP towards a node v. The paths  are a concatenation of and
some path. In case  becomes dominated by another path ,
then all paths will be dominated by  consisting of and the
original. Hence, when discarding a dominated label L from
the list of a node u, we search forward for all subsequent
labels of other nodes v generated by L and discard them both
from the lists and from the queue.

D. Heuristics
Great Circle distance heuristic. Since our focus is on road

networks, a straightforward lower bound for the distance of
a route s-t is the “flying” distance from s to t. In Cartesian
coordinates this would be the Euclidean distance, as in the
length of the straight line connecting s and t.

However, this does not take into consideration the Earth’s
curvature, which results in incorrect lower bounds. Instead,
we use the Great-circle distance which measures the distance
between two points along the surface of a sphere, since the
Earth’s shape resembles a sphere.

Even though this is adequate for approximating a lower
bound on the distance between two points, it cannot be used
for metrics that are not correlated to the distance. However,
computing a lower bound for  travel time is still
straightforward. Since a lower bound for the distance exists,
as well as upper bounds for the speed of travelling (speed
limits), the lower bound for the travel time between two points
can be easily deduced.

TC heuristic. Tung and Chew in [16] have proposed the
following heuristic. Let  be the heuristic function of a node u
during a search towards a target node t. The heuristic function
consists of the shortest distances from u to t with respect to
only one criterion at a time. For each criterion i, a single-
criterion shortest path tree is grown from t on the reverse
graph ,  and each shortest path distance is recorded. Then,
the heuristic is the combination of the shortest path distances

for each criterion, (u,t)) . , c(u,t), . .(u,t) ,c(c(u)h kt
**

2
*
1 .

Clearly, this is a lower bound for any generated distance
label of node u using the NAMOA* algorithm.Bounded
calculation for the TC heuristic. The TC heuristic must build
a full reverse single-criterion shortest path tree for each
criterion of the problem. Even though the single-criterion
search is efficient, this process is executed during the query,
which clearly must be as fast as possible. There is a way to
reduce the search space according to [8]. For simplicity
purposes, we assume that the number of different criteria is
two. The following reasoning can be extended to multiple



Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

© 2012 ACEEE
DOI: 02.ICT.2012.3.16

criteria. Let (u,t) c*
1 be the shortest path cost from u to t with

respect to the first criterion. The cost of this path using the
second criterion is denoted as (u,t) c 2' and is clearly not the

minimum. Accordingly, (u,t) c*
2 is defined as the shortest path

cost from u to t with respect to the second criterion, and the
cost of this path using the first criterion is denoted as

(u,t) c 1' . It has been shown in [10] that NAMOA* does not
consider  paths with costs that are dominated by

)','( 21 (u,t) c(u,t)c  since this can never lead to non-
dominated solutions. Hence, the single-criterion shortest path
tree search can be stopped as soon as it reaches these bounds.

In particular, given an s-t query, the following steps are
carried out:
1. A reverse single-criterion shortest path tree is grown from
t using the first criterion. During the search, for each node,
the shortest path distance towards t is assigned as the first
criterion heuristic for this node. The search is stopped as

soon as it reaches s with cost (s,t) c*
1 . The cost of stP using

the second criterion is recorded as (s,t) c 2' and the search is
paused at this point.
2. A reverse single-criterion shortest path tree is grown from
t using the second criterion. In the same manner as in the first
step, each node u gets assigned its lower bound for the second
criterion. The search is stopped as soon as the minimum cost
in the queue is greater than (s,t) c 2' . Clearly, node s is settled
before quitting the search, and gets assigned the shortest

path cost (s,t) c*
2 , with (s,t) c(s,t) c 2

*
2 ' . The cost of this

path using the first criterion is recorded as (s,t) c 1' .
3. The first search continues from the same point it was
paused in Step 1. The search stops as soon as the minimum
cost in the queue is greater than (s,t) c 1' .

V. EXPERIMENTAL EVALUATION

To assess the performance of our graph structure and
algorithmic implementations, we conducted a series of
experiments on the proposed shortest path routing algorithms
on real world large-scale transportation networks (USA road
networks) with two criteria. The first criterion is the actual
distance and the second criterion is the travel time between
two intersections. The travel time is not always relative to
the actual distance, since different roads have different speed
limits in practice.

Fig. 3. Mean running times (sec) in New York City

Fig.  4. Mean running times (sec) in Florida

A. Setup and Data
All experiments were conducted on an Intel(R) Core(TM)

i5-2500K CPU @ 3.30GHz with a cache size of 6144Kb and
8Gb of RAM. Our implementations were carried out in C++
and compiled by GCC version 4.4.3 with optimization level 3.
According to [12, 13] our CPU is about 30% slower than the
CPU used in [8] and our RAM size is 8 times smaller.

The road networks for our experiments were acquired from
[3] and consist of the road networks of New York City and
the state of Florida. The provided graphs are strongly
connected and undirected. Hence, we consider each edge as
bidirectional. We use these networks in order to directly
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compare the performance of our implementations to the
results of previous works that were evaluated on the same
networks.

B. Experimental Results
We directly compare the heuristic that has the best

running times in the implementation in [8] with all our heuristic
implementations. We denote as Hcd the great circle heuristic,
as Htc the TC heuristic and as Htc Bound the bounded TC
heuristic. We have used the same query set as in [8] in order
to be directly comparable. We have measured the running
times for each query using every heuristic. The running times
reported here are the mean values of 10 query repetitions.
For each query we have cross-referenced the number of non-
dominated solutions in order to assess the correctness of
our implementation, in each case being the same as in [8].

Tables I and II show the running times for each single
query on the road maps of New York City and Florida
respectively. The time is measured in seconds and values
that are omitted are running times that exceed the one-hour
limit. The last column, namely Ratio, is the ratio of the running
times of the bounded TC heuristic in [8] to the running times
of the bounded TC heuristic in our implementation, which
are directly comparable.

The results in [8] are confirmed by our evaluation. The
best running times are achieved using the TC heuristic, either
bounded or not. The difference between these two heuristics
is the initial computation of the heuristics, not the actual
running time of NAMOA*.Our running times are much better
than the running times in [8]. This is apparent by the
ratio,shown in the last column of each table. There are queries
where our implementation is 40 to 50 times faster (bold letters
denote a ratio grater than 20). Even with the worst heuristic,the
great circle heuristic, in some cases (italic letters) our
implementation can outperform the bounded TC heuristic in
[8], especially in smaller networks.

In order to have a more illustrative indication of our
performance gains, we have plotted the mean times of the
query set using each heuristic in both our implementation
and in [8]. These can be seen in Figures 3 and 4. Our
implementation is denoted as PMG NAMOA* due to the use
of the PMG structure.

It is apparent that the PMG NAMOA* is much faster in
each heuristic. The mean ratio between the bounded TC
heuristic implementations is 13 in New York City, and 9.7 in
Florida. Therefore, we can safely claim that our implementation
is roughly 10 times faster on these large-scale networks, on
the given query set.

CONCLUSIONS

We have presented a new implementation of NAMOA*

on a new efficient graph structure. We have suggested not
only implementation optimizations, but also heuristic
enhancements of the algorithm. Finally, we have assessed
the superiority of our implementation through an experimental
evaluation.
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