SEVENTH FRAMEWORK
PROGRAMME

Project Number 288094

eCOMPASS

eCO-friendly urban Multi-modal route PIAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS - TR - 012

Faster Multiobjective Heuristic Search in
Road Maps

Georgia Mali, Panagiotis Michail and Christos Zaroliagis

October 2012

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

Faster Multiobjective Heuristic Search in Road Maps”

Georgia Mali*?, Panagiotis Michail*? and Christos Zaroliagis*?
tComputer Technology Institute & Press “Diophantus”, N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece
2Dept of Computer Engineering & Informatics, University of Patras, 26500 Patras, Greece
Email: {mali, michai, zaro}@ceid.upatras.gr

Abstract— We present new implementations of heuristic
algorithms for the solution of the multiobjective shortest path
problem, using a new graph structure specifically suited for
large scale road networks. We enhance the heuristics with
further optimizations and experimentally evaluate the
performance of our enhanced implementation on real world
road networks achieving 10 times better performance with
respect to the best previous study.

Index Terms—multiobjective shortest path problem, goal-
directed search, heuristic search, transportation networks

l. INTRODUCTION

Multiobjective optimization is a key area attracting great
interest and intense studies in the last 60 years [4,5]. This
area studies decision making problems which operate on an
input of multiple conflicting objectives or criteria, trying to
determine their best possible combination. In such problems
there is no concept that captures a single optimal solution
but, rather, multiple solutions, each representing a different
tradeoff between the input objectives. These form the so
called Pareto set, or the set of non-dominated solutions of
the problem.

One core problem in this area is the multiobjective
shortest path problem, appearing in applications such as QoS
routing in communication networks, traffic equilibria, transport
optimization and route and itinerary planning [4,5,6,15]. Itis
an extension of the single criterion shortest path problem
using a cost vector (instead of a scalar) per network edge.Even
though numerous efficient algorithms exist for the single
criterion shortest path problem, the multiobjective
counterpart of the problem is much harder. In fact, it has been
shown to be NP-complete [6] (as indeed is the case with
almost all multiobjective optimization problems).

Two main approaches are followed in order to reduce the
computation effort for solving the multiobjective shortest
path problem; the first one uses approximation and computes
optimal solutions up to a certain factor [15]. Approximation
techniques do not necessarily yield exact solutions, but are
adequately fast to be used in practice [1]. The second approach
uses heuristic improvements to speed-up existing algorithms
[10, 14]. Such techniques yield exact solutions, but it is
considerably more difficult to achieve good performance.In
this work we focus on the latter approach, motivated by the
great demand in practical applications to achieve efficient
and exact multiobjective shortest paths. The currently best
"This work was supported by the EU FP7/2007-2013 (DG
CONNECT (Communications Networks, Content and Technology
Directorate General), Unit H5 - Smart Cities & Sustainability),
under grant agreement no. 288094 (project eCOMPASS)
©2012 ACEEE
DOI: 02.ICT.2012.3.16

heuristic algorithm for exact multiobjective shortest paths is
NAMOA" [10] in combination with the bounded TC heuristic
[16] as shown in [8]. This approach uses an extension of
Dijkstra’s algorithm [2] and A" search [7] to reduce the search
space (visited part of the underlying network), which is exact,
has very good performance and requires little or no
preprocessing at all.

In this work, we present a new implementation of
NAMOA" on a new graph structure [9] specifically suited for
large-scale networks. Our implementation is enhanced with
new heuristic optimizations that improve memory access and
space efficiency. We evaluate our implementation using the
same data sets as the best previous experimental study [8].
Our experimental results show a clear superiority of our
enhanced implementation over previous results (roughly 10
times faster) using a hardware platform that is about 30%
slower.

Il. PRELIMINARIES

Let G=(V,E) be a directed graph. Each edge is

assigned with a cost vector L =(w, ,\W,, ..., w,), where

k is the number of different criteria. Let L L' be two cost
vectors. We say that | dominates | ' ifthereisi,1<j<k,

such that w, < w'; and w; < W', for each 1< j<k,

i # j.Accordingly, in this case we say that is dominated by.
Given two cost vectors , the sum of these is defined as . The
set of all non-dominated vectors is called Pareto Set.
Apath in isasequence of nodes such that there is an edge
from each node to the next one in the sequence. The cost
label of the path is defined as:

L(P,)=L(uu,)® L(u,,u,)®..® L(u,,v).
For two given nodessandt in G, let P_ be the set of all s-t

paths. In the multiobjective shortest path problems we wish
to compute the Pareto set for P_.

I11. PACKED-MEMORY GRAPH STRUCTURE

A. Overview

For our implementation, we used the packed-memory
graph (PMG) structure, proposed in [9]. This is a highly
optimized graph structure, part of a larger algorithmic
framework, specifically suited for large scale networks. It
provides dynamic memory management of the graph and thus
the ability to control the storing scheme of nodes and edges

<<ACEEE

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

in memory for optimization purposes. It supports almost
optimal scanning of consecutive nodes and edges and can
incorporate dynamic changes in the graph layout in a matter
of ys.

s o

(ua} 2
oy Pl
s
lud)
f‘-l.]'
T o
&]
(udl UL}

Fig. 1. An example graph.

B.Structure

The PMG structure consists of an array for storing the
nodes, in an arbitrary order, and two arrays for storing the
edges, one considering the edges as outgoing from the nodes
and one considering them as incoming to the nodes. The
storing order of the edges follows the order of their base
node in the node array. In the outgoing (incoming) edge array,
the edges are stored in sorted order by source (target) node.
Thus, all outgoing (incoming) edges of a node u lie in
consecutive cells in the outgoing (incoming) edge array. Each
node keeps pointers to the respective range of cells containing
its outgoing (incoming) edges in the outgoing (incoming)
edge array. Each outgoing (incoming) edge keeps a pointer
toits target (source) node and a pointer to its sibling incoming
(outgoing) edge.

ETN
o1

3m | e
{61 [FEFL
2 *

1B
T ER

e o LK Zl } LT L 1VEE |
[T e | [FET

Edges

Fig. 2. Packed-memory Graph Structure

Finally, all three arrays reserve more memory than they
need for their elements. The extra memory cells are evenly
distributed throughout the arrays forming holes in them,
which can then be used to efficiently add new elements. The
maintenance of these holes is carried out by the use of a
binary tree over each array which monitors the density of the

©2012 ACEEE
DOI:02.1CT.2012.3.16

holes within certain intervals of the array and redistributes
the holes evenly when needed.An illustration of the PMG
structure, for the example graph of Figure 1, is shown in Figure
2

C. Internal Node Reordering

Given an arbitrary ordering of the nodes, the PMG can
store them in consecutive memory addresses in the same
order. This order can be changed at any time in an online
manner. This operation is called internal node reordering.
Clearly, any node reordering causes the edge arrays to be
reordered as well. The power of this operation stems from the
insight an algorithm might have about the sequence of its
memory accesses. Such an algorithm can configure the
ordering of the nodes in memory in such a way that will
increase the locality of references and read/write operations
will cause as few memory misses as possible.

D. Operations
The PMG structure can scan S consecutive nodes or
edgesin O(S) timeand O(S/B) memory transfers, where

B is the size of the block transferred between the memory
layers. Hence, during Dijkstra’s algorithm, it can access all
outgoing edges of a node very efficiently.

Insert/Delete operations are very efficient as well. Since there
exist holes in both the node and edge arrays, inserting an
element involves finding a hole near the desirable insertion
point and rearranging the elements in a small range around
the hole. This rearrangement not only makes room for the
new element but also keeps the elements ordered. The deletion
operation is very similar, deleting an element and then
rearranging the elements in a range around it. It is shown in
[9] that the time and memory of the update operations are
polylogarithmic in the size of the graph.

IV. MULTICRITERIA SHORTEST PATHS

In this section, we review the most important methods for
finding all Pareto-optimal solutions in the multiobjective
shortest path problem.

A. Multiobjective Dijkstra’s Algorithm

In order to find Pareto-optimal paths with respect to given
criteria and a given s-t query, an extension of Dijkstra’s
algorithm [11] can be applied. Each node keeps a list of labels
(cost vectors) containing an entry for each criterion and a
reference to its predecessor on the path. These labels
represent paths that are not dominated by any other label on
the node. During an iteration of the algorithm, the
lexicographically minimal label is extracted from the queue,
and the node u associated with it is processed. The process
starts with scanning all outgoing edges of u and updating
the labels on the neighboring nodes provided an update is
feasible. For each neighboring node v, a new label is created
representing the path to v through u. This label is then
compared to the existing list of labels of v, and is inserted in
the queue and the list of labels of v, only if it is not dominated

<<ACEEE

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

by any other label. Furthermore, previously existing labels of
v that are dominated by the newly computed label are
discarded.The algorithm stops when the queue is empty.
Then, the labels of t represent all non-dominated paths from
s to t. The paths can be reconstructed by following the
predecessor pointers of each label.

B. NAMOA™Algorithm

Proposed in [10], the NAMOA" algorithm incorporates
the A" search technique with the multiobjective Dijkstra’s
algorithm along with several optimizations.

The core s-t query is similar to the multiobjective Dijkstra’s
algorithm with some extensions. The main difference is that
the priority of a label in the queue is modified according toa

heuristic functionh, :V — R*. This function gives a lower

bound estimate h, (u) for the cost of a path from a node u to

atarget node t. By adding this heuristic function to the priority
of each generated label of a node, the search is pulled faster
towards the target. The tighter the lower bound is, the faster
the target is reached. Hence, different heuristic functions
yield different performances.

In Section IV.D we describe the heuristic functions used
for our evaluation.In order for the A" search extension to
have as large an effect as possible, more modifications have
been introduced to the core multiobjective Dijkstra’s algorithm
[10]. First, the list of labels on a node u are split into two sets,

G,, (U) and G (u) where the first contains the labels that

are also present in the queue, and the second contains the
rest. This way, when discarding a label from the list that is
also present in the queue, it is discarded from the queue as
well.

Moreover, as soon as the target node is reached through

a non-dominated path P, this path gets recorded and the
search is pruned by it. On each iteration, when a label

representing a path P, is extracted from the queue, a check

takes place; if the label representing is dominated by the
label representing, then there can be no path to t consisting
of that is not dominated. Therefore, the label representing is
discarded, and the search is pruned at this point.

It is clear that the fastest a first non-dominated path to t is
discovered, the earliest the search will be pruned. Hence, the
heuristic function that pulls the search towards the target is
a very important factor affecting the overall performance of
the algorithm.

C. Optimizations

We have incorporated our own optimizations in the
NAMOA" algorithm, mainly to increase the efficiency of the
memory accesses. First, we do not keep G, and G as

different entities on each node. Instead, we have combined
them into one list of labels, and have extended the actual
labels to contain a flag determining whether a particular label
is in the queue or not. This way, all labels of a node, either

©2012 ACEEE
DOI:02.ICT.2012.3.16

open or closed, reside on consecutive memory addresses,
yielding less cache misses. Second, we keep a pointer on
each label, pointing to the predecessor node that generated
it. Thus, the predecessor graph, and all non-dominated paths
can be induced by following these predecessor pointers.

Third, we have made the following observation. Any label L
residing on a node u during an iteration of the algorithm

represents a currently non-dominated path P, . This path
might have been the prefix of more non-dominated paths

P,, towards a node v. The paths are a concatenation of and

some path. In case becomes dominated by another path ,
then all paths will be dominated by consisting of and the
original. Hence, when discarding a dominated label L from
the list of a node u, we search forward for all subsequent
labels of other nodes v generated by L and discard them both
from the lists and from the queue.

D. Heuristics

Great Circle distance heuristic. Since our focus is on road
networks, a straightforward lower bound for the distance of
a route s-t is the “flying” distance from s to t. In Cartesian
coordinates this would be the Euclidean distance, as in the
length of the straight line connecting s and t.

However, this does not take into consideration the Earth’s
curvature, which results in incorrect lower bounds. Instead,
we use the Great-circle distance which measures the distance
between two points along the surface of a sphere, since the
Earth’s shape resembles a sphere.

Even though this is adequate for approximating a lower
bound on the distance between two points, it cannot be used
for metrics that are not correlated to the distance. However,
computing a lower bound for travel time is still
straightforward. Since a lower bound for the distance exists,
as well as upper bounds for the speed of travelling (speed
limits), the lower bound for the travel time between two points
can be easily deduced.

TC heuristic. Tung and Chew in [16] have proposed the
following heuristic. Let be the heuristic function of a node u
during a search towards a target node t. The heuristic function
consists of the shortest distances from u to t with respect to
only one criterion at a time. For each criterion i, a single-
criterion shortest path tree is grown from t on the reverse
graph, and each shortest path distance is recorded. Then,
the heuristic is the combination of the shortest path distances
for each criterion, h(u)=(c;(u,t) ,c(ut), ..., c(ut)).
Clearly, this is a lower bound for any generated distance
label of node u using the NAMOA™ algorithm.Bounded
calculation for the TC heuristic. The TC heuristic must build
a full reverse single-criterion shortest path tree for each
criterion of the problem. Even though the single-criterion
search is efficient, this process is executed during the query,
which clearly must be as fast as possible. There is a way to
reduce the search space according to [8]. For simplicity
purposes, we assume that the number of different criteria is
two. The following reasoning can be extended to multiple

<<ACEEE

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

criteria. Let ¢/(u,t) be the shortest path cost from u tot with
respect to the first criterion. The cost of this path using the
second criterion is denoted as ¢', (u,t) andis clearly not the

minimum. Accordingly, c,(u,t) is defined as the shortest path

cost from u to t with respect to the second criterion, and the
cost of this path using the first criterion is denoted as

c',(u,t) . Ithas been shown in [10] that NAMOA" does not
consider paths with costs that are dominated by

(c',(ut), ¢',(u,)) since this can never lead to non-

dominated solutions. Hence, the single-criterion shortest path
tree search can be stopped as soon as it reaches these bounds.
In particular, given an s-t query, the following steps are
carried out:
1. Areverse single-criterion shortest path tree is grown from
t using the first criterion. During the search, for each node,
the shortest path distance towards t is assigned as the first
criterion heuristic for this node. The search is stopped as

soon as it reaches s with cost ¢/(s,t) . The cost of P, using

the second criterion is recorded as c', (s,t) and the search is

paused at this point.

2. Areverse single-criterion shortest path tree is grown from
t using the second criterion. In the same manner as in the first
step, each node u gets assigned its lower bound for the second
criterion. The search is stopped as soon as the minimum cost

in the queue is greater than c', (s,t) . Clearly, nodessis settled
before quitting the search, and gets assigned the shortest

path cost c(s,t) , with ¢i(s,t) <c',(s,t) . The cost of this

path using the first criterion is recorded as c', (s,t) .

3. The first search continues from the same point it was
paused in Step 1. The search stops as soon as the minimum

cost in the queue is greater than c', (s,t) .

V. EXPERIMENTAL EVALUATION

To assess the performance of our graph structure and
algorithmic implementations, we conducted a series of
experiments on the proposed shortest path routing algorithms
on real world large-scale transportation networks (USA road
networks) with two criteria. The first criterion is the actual
distance and the second criterion is the travel time between
two intersections. The travel time is not always relative to
the actual distance, since different roads have different speed
limits in practice.

©2012 ACEEE
DOI:02.ICT.2012.3.16

| EPRAG MARADIA®

Fig. 3. Mean running times (sec) in New York City

{280 4%

MAMDA® in [B] 1 PRIG MARMOL®

Al 4

Fig. 4. Mean running times (sec) in Florida

A. Setup and Data

All experiments were conducted on an Intel(R) Core(TM)
i5-2500K CPU @ 3.30GHz with a cache size of 6144Kb and
8Gb of RAM. Our implementations were carried out in C++
and compiled by GCC version 4.4.3 with optimization level 3.
According to [12, 13] our CPU is about 30% slower than the
CPU used in [8] and our RAM size is 8 times smaller.

Theroad networks for our experiments were acquired from
[3] and consist of the road networks of New York City and
the state of Florida. The provided graphs are strongly
connected and undirected. Hence, we consider each edge as
bidirectional. We use these networks in order to directly

<<ACEEE

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

compare the performance of our implementations to the
results of previous works that were evaluated on the same
networks.

B. Experimental Results

We directly compare the heuristic that has the best
running times in the implementation in [8] with all our heuristic
implementations. We denote as H_, the great circle heuristic,
as H_the TC heuristic and as H,_ Bound the bounded TC
heuristic. We have used the same query set asin [8] in order
to be directly comparable. We have measured the running
times for each query using every heuristic. The running times
reported here are the mean values of 10 query repetitions.
For each query we have cross-referenced the number of non-
dominated solutions in order to assess the correctness of
our implementation, in each case being the same as in [8].

Tables I and Il show the running times for each single
query on the road maps of New York City and Florida
respectively. The time is measured in seconds and values
that are omitted are running times that exceed the one-hour
limit. The last column, namely Ratio, is the ratio of the running
times of the bounded TC heuristic in [8] to the running times
of the bounded TC heuristic in our implementation, which
are directly comparable.

The results in [8] are confirmed by our evaluation. The
best running times are achieved using the TC heuristic, either
bounded or not. The difference between these two heuristics
is the initial computation of the heuristics, not the actual
running time of NAMOA".Our running times are much better
than the running times in [8]. This is apparent by the
ratio,shown in the last column of each table. There are queries
where our implementation is 40 to 50 times faster (bold letters
denote a ratio grater than 20). Even with the worst heuristic,the
great circle heuristic, in some cases (italic letters) our
implementation can outperform the bounded TC heuristic in
[8], especially in smaller networks.

In order to have a more illustrative indication of our
performance gains, we have plotted the mean times of the
query set using each heuristic in both our implementation
and in [8]. These can be seen in Figures 3 and 4. Our
implementation is denoted as PMG NAMOA" due to the use
of the PMG structure.

It is apparent that the PMG NAMOA" is much faster in
each heuristic. The mean ratio between the bounded TC
heuristic implementations is 13 in New York City,and 9.7 in
Florida. Therefore, we can safely claim that our implementation
is roughly 10 times faster on these large-scale networks, on
the given query set.

©2012 ACEEE
DOI:02.ICT.2012.3.16

CONCLUSIONS

We have presented a new implementation of NAMOA™
on a new efficient graph structure. We have suggested not
only implementation optimizations, but also heuristic
enhancements of the algorithm. Finally, we have assessed
the superiority of our implementation through an experimental
evaluation.

REFERENCES

[1] D. Delling and D. Wagner. “Pareto Paths with SHARC”. In
Proc. SEA’09, LNCS vol. 5526, pp. 125-136, 2009.

[2] E.K. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik 1 (1959), pp.269-271

[3] 9" DIMACS Implementation Challenge - Shortest Paths, http:/
/www.dis.uniromal.it/challenge9/download.shtml

[4] M. Ehrgott, “Multicriteria Optimization,” Springer, Berlin
2000.

[5] M. Ehrgott and X. Gandibleux, “Multiple Criteria
Optimization—State of the Art Annotated Bibliographic
Surveys,” Kluwer Academic, Boston 2002.

[6] P. Hansen, “Bicriterion path problems,” Lecture notes in
economics and mathematical systems, vol. 177, 1979, pp.109-
127, Springer.

[7]1 P. E. Hart, N. J. Nilsson and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,” IEEE
Transactions on Systems Science and Cybernetics SSC-4, 2,
pp 100-107, 1968.

[8] E. Machuca, and L. Mandow, “Multiobjective heuristic search
in road maps,” Expert Systems with Application. 2012.

[9] G Mali, P. Michail and C. Zaroliagis, “A new dynamic graph
data structure for large-scale transportation networks,”
eCOMPASS Technical Report, TR-003, July 2012.

[10] L. Mandow, and J. L. Perez de la Cruz, “Multiobjective A*
search with consistent heuristics,” Journal of the ACM, 57,
27, 2010, pp. 1-25.

[11] E. Martins, “On a multicriteria shortest path problem,”
European Journal of Operational Research, 16, 1984, pp.236-
245.

[12] Passmark CPU Benchmark, Six-Core AMD Opteron 2435,
http://www.cpubenchmark.net/
cpu_lookup.php?cpu=[Dual+CPU]+Six-
Core+AMD+Opteron+2435

[13] Passmark CPU Benchmark, Intel Core i5-2500 @ 3.30GHz,
http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core+i5-
2500K+%40+3.30GHz

[14] B. S. Stewart and C. C. White, “Multiobjective A",” Journal of
the ACM 38 (4), pp.775-814.

[15] G. Tsaggouris and C. Zaroliagis, “Multiobjective Optimization:
Improved FPTAS for Shortest Paths and Non-Linear
Objectives with Applications”, Theory of Computing Systems,
Volume 45 Issue 1, April 2009, pp 162-186.

[16] C. T. Tung and K. L. Chew, “A multicriteria Pareto-optimal
path algorithm”, in European Journal of Operational Research,
62, 1992, pp.203-209.

<<ACEEE

Full Paper

Proc. of Int. Conf. on Advances in Information and Communication Technologies 2012

TABLE |. RunNING TiMEs ON New York CiTy TaBLE Il. RunNING TiMES ON FLORIDA

Sourcz id| Tarset id | H.. Bound [B] H.. H.. |H.Bound Ratio Source id| Tarpstid | H.. Bound [E] H.. H. |H.Bound Fatio
33502 22 | 1062 824 098 937 361738 608672 2161 | 173.78 | 2.86 38| 7.3
198361 034 040 | 023 004 744 S46667| 1044042 41,77 | 66216 | 523 588 7.13
40851 52587 | 7e14e | 3611 3501 1464 115105 421966 86,50 N EET 0.24| 1055
19103 498 773 | 084 075 660 742805 335320 B04.18 - | 6280 o5.10| B46
65190 009 10| 019 001) 6463 88673 333047 1163.01 - | 83.02| 10060 10.62
171882 44.17 1101 213 20.73 766578 263017 125.11 | soo.6s | 1146 13.30) 241
161174 948 | 45| 517 313 1743 28100 248660 §35.32 - | 6486 47| o
177414 209 1a49 134765 11866 276.88 NET E

186144 86222 | 54661 | 6016 6048 1426 158576 sasais 153

30616 727 | 3784 096 2083 B g50282) 327441 1853 | 1710 174 2| 1422
36500 402 34 2 56 1332

i | LG) e SN 530004] 630504 1002 | 133.24 | 1.15] ©0.52] 10.26
103087 1733 | 13046 | 693 689 1122 —

4R0044(453400 X7
4B1E60| 1045443 10,87 | 108.05 3.03 1.50| B.0D
273776 154436 50.86 | 158.14 | 178 1.72] 18.97
o46451| 513773 62.32 B60.00 6.57 6.61| ©.48

12905 | 21617 B28 B34l 1547
12817 | 28128 196 747 16.09
531 1052 | 039 028 19.15

75333
191865
35170

T4
207442

- - op021| 350105 1160.1 “[rena| 1onenf 1138
52306 2205 | 9186 | 134 136 1622
7832 5886 388, “[3087 35.18 1106
58427 663 | 5602 | e31 43 177 | Bt et 30.67| 3518 1LO
ATOT -+ I 5 & 7 37 &
91985 9736 | 6345 | 610 6.0 1596 st Mlona i Wik o0l i
: 308560| om2263 1835 | 40.06 | 3.53| 3.03| 6.03

242644 163390 1283 | 2022 | 081 087 1448
4n180| 100330 554 ara| osd| o036 1540

]
3
BOOTTI(BVORAT B71.37 - | 6867 B4.67] 10.32

=P pr— e e e o 233360 £asTs 202 | s217| 210 180| 12.16
120048 7003 13524 | 4144 | 1113 1114) 1215 00| 34T Lt il) B M
250103 173121 iy | swsr w6 an s16174] 154020 6800 | 62838 | 735 745 036

B
147806 136543 §3.03 §7.05 438 437 1480 120008 118211 32.44 560.11 3.28 2.89] 11.

30

180a34] 31334 7534 6677 | 182 177 1220 205861 756883 .08 2422 | 23% 1.70] 5.33
138263 253854 064 171 024 007l 939 41614 404340 5.53 32.06 o2 0.20| 27.63
246144 156338 §.84 400 | 045 034| 2003 933700 561380 2B.18 | 1274.26 2R 0.35| 5156
25610 143842 1071 1282 0467 058 1854 137RBG| 310BBD B&4.33 - | #8535 21.12| 10.74
228779 167251 185 B395 | 111 1.10] 1620 257738 652062 .86 20.72 1.47 090 318
78036 34134 30046 14119 | 222 224 1977 4TE200| 1062060 13438 | 151.80 | 16.21 16.55| B.17
124173 138439 108.12 5641 | 982 254 1022 173720 246425 2218 B R 161 B.51
260563 233292 3351 266 | 044 029 1214 43874| BO3ET3 56.61 | 65090 | 6.12 598 247
193148 66814 2474 | 18035 | 673 679 1345 3E2275(1044332 §8.37 - | 6.7 6.61| 10.38
29432| 29834 205 3636 | 132 143 1411 462808 85391 13.72 11.72] 1.80 1.05| 13.12
193241) 144827 20909 | 533464 | 1654 15440 1270 B1B016(57330 7478 | 34952 | g.11 203 B2B

161522) 171444 0.8 418 | 029 051 134 257388 17750 £16.32 - | 7427 @682 10.55

176210 109129 2321 | 6622 | 130 134 1727 16738 751658 260.02 - | 2z83] 3217 836
2512ld] 33904 1209 f472] 113 11g] 1729 364003 404700 11802 | sozes | 1181 1200 soo

2] 262620 152, | AR 04y D5 083 472405 103187 2690 | 13233 | 2s2f z2nf1z7e
33257) 18638 133 [d4] 031 005 3160 131863 294161 10.91 92z | 216 133 11
atd| el e 0 B] i s B L 363001 263258 19572 | 71202 | 16.16] 16.57 11.81
it e R | S G 310505| 612278 323724 - 20038 335.04] o0

e Wt e ol i il e 401800| 618033 3341.38 - |3T7.5% 30.60| B.56
177037 199832 544 o4 | 024 0.12| 4594

§8330(206280 11412 5305 524 627 1820

G141+ 503467 1132 441 042 045 2440
180834 B3150 194815 | 75273 |15337 15324 12.71
179874 57536 149573 | 117339 |127.79 ll"i'ﬁl 1169

BE237) 120907 138098 | 170734 |1183 ll'Jill 1185

©2012 ACEEE ~~ACEEE

DOI:02.1CT.2012.316

