SEVENTH FRAMEWORK
PROGRAMME

Project Number 288094

eCOMPASS

eCO-friendly urban Multi-modal route PIAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS - TR - 017

Approximation Algorithms for
Time-Dependent Shortest Paths

Spyros Kontogiannis and Christos Zaroliagis

April 2013

APPROXIMATING TIME-DEPENDENT SHORTEST PATHS
IN ROAD NETWORKS*

SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

ABSTRACT. We present efficient algorithms for approximating time-dependent shortest travel-
time functions, in directed graphs representing road networks.

1. INTRODUCTION

Computing shortest paths in graphs is a core task in many real-world applications, such as route
planning in transportation networks, routing in communication infrastructures, etc. Typically the
underlying graph is accompanied with an arc-cost function, assigning a fized cost value to every
arc, representing average travel-time, distance, fuel consumption, etc. The path of a particular
cost is then the aggregation of arc costs along it.

However, in real-world applications the cost of each arc should not be considered as a fixed value,
since it undergoes frequent updates. These updates may be instantaneous, unpredictable changes
(e.g., due to a sudden change of weather conditions, or a car accident that blocks a road segment
or junction), or anticipated updates due to periodic changes of the network characteristics over
time. For example, the traversal-time of a road segment may depend on the real-time congestion
upon traversal, and thus on the departure time from its tail: In rush hours it is anticipated that
it will be much longer than the free-ride traversal-time which is usually valid only for particular
departure times (e.g., during the weekend, or at night). Such networks in which the characteristics
of the network change in a predictable fashion over time, are called time-dependent networks. In
the present work we focus on such networks in which it is the behavior of the arc-cost functions
that are described by time-dependent functions, whose exact shape comes from statistical analysis
of historical traffic information. For example, the traversal time of a particular road segment
may be sampled at particular times during a day from the historical traffic information, say per 5
minutes during rush hours and more rarely for the remaining periods of the day; the corresponding
arc-cost function is then considered to be the (continuous) interpolant of all these sample points.
Simply taking a snapshot of the entire network (if possible) and solving the corresponding Static
Shortest Path problem is clearly not the proper way to provide a route plan in this case. In the
following we shall consider as arc-cost functions the traversal-time (or delay) functions when we
start traversing them at particular times. The problem is then to compute a truly shortest path
between an origin-vertex and a destination vertex in the network taking into account also, not
only the departure time from the origin, but also the consequent departure time of any other arc
that is to be used by a shortest path towards the destination. The problem was introduced in [1].

1.1. Notation. Consider a directed graph G = (V, A), with nonnegative, continuous, piecewise

—
linear (pwl) arc-delay functions Va € A, D[a] : R — Rs, providing the arrival time at the
destination head[a] as a function of the departure time from the origin tail[a]. Such a function
could for example be the interpolant of average arc-delays for particular departure times from a

Date: September 1, 2013.

1991 Mathematics Subject Classification. 05C85: Graph algorithms; 05C12: Distance in graphs; 68W25: Ap-
proximation algorithms; 68Q25: Analysis of algorithms and problem complexity.

Key words and phrases. Time-dependent shortest paths, FIFO property, distance oracles.

* Partiallly supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities & Sustainability), under
grant agreement no. 288094 (project eCOMPASS).
S. Kontogiannis: University of Ioannina and Computer Technology Institute & Press “Diophantus”, kon-
tog@cs.uoi.gr.

C. Zaroliagis: University of Patras and Computer Technology Institute & Press “Diophantus”, zaro@ceid.upatras.gr.
1

—

given time period II = [0, T, such that Vk € Z,Vt, € II,Va € A, 3[&] (tu +k-T) = Dla)(t,). An
example of such an arc-delay function is the following (its plot is shown in figure 1):

3ty +1, 0<t, modT <3

5, 3<t, modT <5
Vt, € R, Dluv](ts) = %, —5 5<t, modT <7
—2t,+ 12, 7<t, modT <20

1, 20<t, modT <24
A A A
10
> 8
= o
[5) 6 S
o
2 4
p -
©
000 * 4
N v H »
-4 2 2 4 6 8 10 12 14 16 18 20 22 26 28 30 32 34 36 38 40 42 44 46 48 50 '

departure t, from tail[uv]

FIGURE 1. Example of a continuous pwl (forward) arc delay function (on the left)
and the corresponding reverse-arc-delay (on the right), for an arc a = wv € A,
whose period is T' = 24h.

For notational reasons we assume that V¢, € II,Vu € V,B[uu](tu) =0 and Vuv ¢ A =
N
D[uv](t,) = +00. Moreover, rather than defining the arc-delay functions as functions of departure-
time from the tail, we may also prefer to express them as functions of arrival-times at the heads.

We use the notation D[uv] : R — R for these reverse arc-delay functions. For example, the
reverse arc-delay function corresponding to the forward arc-delay of figure 1 is the following (see
figure 2):

t,+2, 1<t, modT <38
5, 8<t, modT <10
Vt, € R, Dluv](t,) = 2,—3, 10<t, modT <16
—5,+12, 16<t, mod T <21
1, 21 <t, modT <24Vv0<t, modT <1

arc delay

: N NP

000 »
4 2 02 4 6 8 10 12 14 16 18 20 22 24|26 28 30 32 34 36 38 40 42 44 46 48|50

arrival t, at head[uv]

v

FIGURE 2. The reverse arc-delay function corresponding to the (forward) arc
delay function of figure 1.

Remark: It is mentioned that for the reverse expression of the arc-delay function to exist, it

must be the case that the original (forward) arc-delay does not have any leg of slope less or equal

to —1. In particular, when this is the case, we can invert the (monotone in this case) arrival-time

function t, = Arrfuv|(t,) = t, + B[uv} (t.) to get Depluv] = (Arr[uv])~! and then compute
2

B[uv] (ty) = ty, — Depluv](t,) = Arr[uv](ty) — t, = B[uv](tu) As we shall explain later, we
indeed demand that all the slopes in any forward arc-delay function have value strictly greater
than this value, and this is not only for the computation of the reverse arc delays.

—

Analogously, G = (V, (Z) where 4 = {vu € V XV : uv € A} is the graph produced by G if we
reverse the directions of all the arcs in it.

For an arbitrary origin-destination pair of vertices, (0,d) € V x V, let P, 4(G) be the set of
all (directed) walks from o to d in G, while P(G) = U, gev xv Po,a(G). For arbitrary vertices
u,v,2 € V and any walks p € Py, and ¢ € P, ., p D q € P, is the walk resulting as the
concatenation of p and ¢ at vertex v. Any walk p € P(G) that does not repeat any vertex is a
(sometimes redundantly called simple) path. For sake of simplicity, we shall skip reference to the
graph, when this is clear from the context. Any particular walk will mostly be considered as an
ordered set of arcs such that for any pair of consecutive arcs, the head of the first arc is identical
to the tail of the second arc. Occassionally we may want to declare a subwalk of p from (the first
appearance in p of) a vertex € V' to (the fist appearance in p of) a vertex y € V. This subwalk
will be denoted by pguy.

For a walk (path) p = (a1, --ag) € Poq and V1 <i < j <k, let p; ; be the subwalk (subpath)
of p starting with the i*" arc a; and ending with the ;™ arc a; in the order. We define the
walk/path-delay function of p recursively as a function of the departure time ¢, from its own origin
tail(p) = tail(ay), as follows:

Vi, e RVI<i <k, Dlpiil(to) = Dlai(to)
Vt, ERVI i< j <k, Dlpiylte) = Dlpuil(ts) + Dlpisrsl (to + Dlpail(to))
We may also express a similar recursive definition of the reverse-path-delays:

Vg €RV1 <i <k, Dlpii(ta) = Dlai](ta)
Vg € RVI<i<j<k, Dlpul(ta) = Dpjul(ta) + Dlpij-1] (td - (BLPj,k}(td))

Similarly, we define the arrival-time function of p at its end-vertex head(p) = head(ay), as a
function of the departure-time ¢, € R from its start-vertex tail(p) = tail(ay):

(3) Vt, € R, Arr[p|(t,) = to + D[p](to)

It is easily seen that the path-arrival-time functions are indeed compositions of the corresponding
arc-arrival-time functions of the arcs comprising them:

@) Arrlpial(ts) = to+ Dlpial(te) = to+ D[p11](te) + Dlpa](to + Dlpral(ts))
Arripa k] (Arr[p11](to)) = (Arrlpax] o Arr[pia]) (to) = - -
= (Arrlag]o---o0 Arrfai]) (to)

Analogously, the path-departure-time function of p from tail(p) = tail(a;), given the arrival-time
ta € R at head(p) = head(ay), is defined as follows:

(5) Deplp](ta) = ta — Dlp)(ta)
Again, the path-departure-time functions are compositions of the corresponding arc-departure
functions of the arcs comprising them:
(6) Deplpril(ta) = ta— Dlpril(ta) = ta — Dlprsl(ta) = Dlprs-1] (ta — Dlprl(ta))
= Deplp1 k1] (Deplpr.k|(ta)) = (Deplp1 k—1] o Deplpyi]) (ta) = -
= (Deplai] oo Deplai]) (tq)

For any pair of vertices (o,d) € V x V, the earliest-arrival-time function from o to d is defined
as follows:

(7) Vi, € R, Arrfo,d](t,) = min {Arr[p](t,)}
pepo,d
Assuming that the strict FIFO property holds (to be determined later), we know that at least one
of the optimal od—walks assuring the earliest-arrival at the destination is indeed a path. Recall
3

also that self-loops are assumed to have zero delay, while inexistent loops are assumed to have
infinite delay. Therefore, we could also write (7) as a continuous optimization problem as follows:

Arrfo,d](t,) = ming, v, ,ev {Arr[vn_a,d]| (- - (Arrfo,v1](t,)))}

The earliest-arrival-time at the destination, between a given pair of origin-destination nodes and
a given departure time from the origin, is stated as follows:

Definition 1.1. Earliest-arrival-times to destinations, for given Origin (SOEAT)
INPUT : Directed graph G = (V, A).

0 €V xV: An origin-vertez.

t, € Il: The departure-time from the origin.

Ya € A, B[a] :R — Ry . The forward arc-delay functions.

GOAL : The earliest-arrival-time values Arr{o,d|(t,) to all possible destinations d €
V' reachable from o, given the departure-time t, from o. Moreover, a tree
of od—paths path plo,d] € P, q achieving these arrival-times, i.e., such that
Arrplo,d]](t,) = Arr{o,d](t,).

2. FIFO PROPERTY IN TIME DEPENDENT NETWORKS

A fundamental property of time-dependent networks is the FIFO (a.k.a. non-overtaking) prop-
erty which states the following:

(8) Vi, t, € R,Vuv € A, t, > t,, = Arr[uv](t,) > Arrjuv](t,)

That is, all the arc-arrival-time functions in the network are non-decreasing. The following propo-
sition is a characterization of the FIFO property for networks with continuous arc-delay functions:

Proposition 2.1. Assume a graph G = (V, A) with continuous arc-delay functions, satisfying
the (strict) FIFO property. Then any arc-delay function must have left and right derivatives with
values at least (greater than) —1.

Proof. Observe that, by the FIFO property: Va € A, Vi, € R,V§ > 0,
Arr[a)(ty) < Arr[a)(tu + 6) < ty + Dla](tu) < tu + 6 + Dla](ty +)
f5>0+ Dla](ty + 8) — Dla](ta
2o Dla(ta +6) ~ Dlal(t)

5 =1
This immediately implies that the left and right derivatives of D[a] are lower bounded (strictly,
in case of strict FIFO property) by —1. O

It is also easy to verify that the FIFO property, only assumed for arc-arrival-time functions, also
holds for arbitrary path-arrival-time functions, and earliest-arrival-time functions in the graph:

Proposition 2.2. Assume a graph G = (V, A) with continuous arc-delay functions, satisfying the
FIFO property. Then, for any path p = {a1,...,ar) € P(G) it holds that:

Vi, € R,V >0, Arrp|(t1) < Arr[p](t1 + 0)

In case of strict FIFO property, the inequality is also strict. FIFO property holds also for every
earliest-arrival-time function in G.

Proof. The explanation for the FIFO property on an arbitrary path p in G is provided by a simple
inductive argument on the prefixes of p, based on the recursive definition of path-arrival-time
functions (cf. equation (4)).

As for the earliest-arrival-time function Arr|o,d], since this is the minimization operator over
non-decreasing (increasing) path-arrival-time functions, it is also itself a nondecreasing (increasing)
function of departure-time from o. O

When moving from an origin to a destination in a time-dependent network, a traveler may
possibly have the option to wait at a node for certain amounts of time, prior to traversing an arc
emanating from it. We consider the following cases of waiting policies (see also [5]).

Unrestricted Waiting (UW): A traveler may wait at any node for an arbitrary amount
of time, prior to traversing an arc emanating from it.
4

Forbidden Intermediate Waiting (FIW): A traveler may wait only at the origin, for an
arbitrary amount of time, prior to starting the journey towards the destination (without
any other waiting at a node).

Forbidden Waiting (FW): No waiting is allowed, at any node in the network.

The general problem SOEAT was proved to be NP—hard, if the FW-policy is adopted and
arc-delays are allowed not to possess the FIFO property. It may even be the case that there is
no optimal-waiting (i.e., one that minimizes the earliest-arrival-time at the destination) at a node
[5]. On the other hand, it is well known [2] that SOEAT is polynomial-time solvable when the
UW-policy is adopted and the optimal-waiting time always exists for every node, independently
of the shape of the arc-delay functions. Indeed, such a scenario is also known [5] to be equivalent
to an appropriate FIFO network with the FW-policy.

For instances in which the FIFO property holds, the crucial property of subpath optimality
holds:

Proposition 2.3. Assume a graph with arc-delays satisfying the strict FIFO property. Then, for
all vertices u,v € V, any departure-time t,, € R from u, and any optimal path

* in {A ty
p eargpeﬂggv{ rr(p](tu)}

it holds that every subpath q* € Py, of p* is a shortest path between its endpoints x,y for departure
time from x equal to t: = Arr[pk_.]1(t.).

Proof. For sake of contradiction, assume that: 3¢ € P, : Dlq](ty) < D[¢*](ts). Then, p =
Pz © QO D}, suffers smaller delay than p* for departure time ¢,,. Indeed, let ¢, = t; + D[q](t})
and t; = t; + D[p;..,|(t;). Due to the alleged suboptimality of p}_,, when departing at time ¢},
it holds that ¢, < ¢;. Then:

Arrlpl(ty) = tu+ DIp](t.)
= lu+ Dlpy..](tu) +D[q|(t3) + Dlpy,..,|(t; + Dlql(t3))
=tz

=tz + Dldl(5;) +Dlpy...,]t + Dldl(£;)) = ty + Dlpy.., ()
—————

7ty

<ty + Dlp,.,|(t,) = Arrp*](ta)

violating the optimality of p* for the given departure-time ¢, (the inequality is due to the strict
FIFO property). O

Therefore, both Dijkstra’s label setting algorithm and label-correcting algorithms for shortest
uv—path computations in time-independent graphs, also work (with slight modifications in the
label updates, e.g., see figure ??) in time-dependent strictly FIFO networks, under the usual
conventions that we consider for the static instances (positivity of arc-delays for the label setting,
and inexistence of negative-delay cycles for the label correcting approaches).

A similar problem is to compute the value of the latest-departure-time function from the origin,
between a given pair of origin-destination nodes and a given arrival time: Again, we could express
the required function as the result of a continuous optimization problem as follows:

(9) Vta € R, Deplo, d](ts) = nax {Deplp](ta)}

max _ {Deplo,v1] (- - - (Deplvn—2,d](ta)))}

V1yeeeyUn—2€V

where the second equality also holds FIFO networks. The corresponding combinatorial optimiza-
tion problem is thus the following:

Definition 2.1. Latest Departure Times towards a Single Destination (SDLDT)
INPUT : Directed graph G = (V, A).

d eV xV: A unique destination vertex.

tq € R: The arrival-time at the destination vertex.

Va € A, B[a] :R — Ry . The reverse arc-delay functions.

GOAL: The latest-departure-time values Deplo,d|(tq) from all possible origins o €
V', given the arrival-time tq at d. Moreover, a tree of shortest-travel-
time paths p*lo,d] € P, q achieving these departure-times, i.e., such that
Dep[p* [07 d]](td) = Dep[oa d](td)

3. SuCCINCT REPRESENTATIONS OF EARLIEST-ARRIVAL FUNCTIONS

In case of huge networks, as is the case for either continental road networks, metropolitan-size
urban networks, or social networks, it is rather impractical to use Dijkstra or a label-setting al-
gorithm for every individual shortest path query, even in the stricter case of planar embedded
graphs. For the time-independent case the issue has been tackled quite successfully both theo-
retically (using distance oracles) and in practice (using speed-up techniques). The main idea in
both cases is to afford a costly preprocessing phase, that is nevertheless polynomial-time tractable,
space efficient and amenable to relatively fast updates in case of dynamic changes in the graph, so
that in real-time one can support extremely fast (in sub-linear / polylogarithmic / constant time
theoretically, within microseconds in practice) arbitrary shortest path queries.

Both the theoretical and the practical approaches precompute distance-related information from
/ to specific subsets of nodes in the network. This precomputed information is stored and then
used either as part of the direct shortest path calculations between arbitrary pairs of vertices, or
in order to provide good lower bounds that are used to direct the search of a shortest path in
a Dijkstra-like query algorithm. When applied to time-dependent instances, rather than storing
shortest-path distances, one has to keep in memory the earliest-arrival-time / latest-departure-
time functions from / to these particular nodes. Therefore, an important problem to be solved
(and consequently used as a subroutine) is the following:

Definition 3.1. Earliest-Arrival-Time Functions from Single Origin (SOEAF)
INPUT : Directed graph G = (V, A).

o € V: A particular vertex considered as the origin.

Ya € A, B[a] :R — Ry . The arc-delay functions.

GOAL: A succinct representation of the entire earliest-arrival-time functions
Arrlo,d](t,), for any possible destination vertex d € V and all possible
departure-times t, € R from o.

The analogue of SOEAF for latest departures from various origins towards a single destination
is called Latest-Departure-Time Functions towards a Single Destination (SDLDF') and simply
considers the reverse arc-delay functions B[a] : R — Ry and the latest-departure-time functions
Deplo, d] from various origins to the single destination d. Alternatively, we might be interested in
computing all the earliest-arrival-time functions from a given set of origins O C V, to any other
vectex in the graph:

Definition 3.2. Earliest Arrival Time Functions from Multiple Origins (MOEAF)
INPUT : Directed graph G = (V, A).

R CV: A particular subset of potential origin-vertices.

Va € A, B[a] :R — Ry . The forward arc-delay functions.

GOAL: A succinct representation of the entire earliest-arrival-time functions
Arrlo,d|(t,), for any possible origin-vertex o € O, any destination-vertex
d € V and arbitrary departure-times t, € R from the origin o.

Once more, the analogue of MOEAF for the case of latest-departure-time functions from all
origins to any vertex from a given set of destinations, is called Latest-Departure-Time Functions
towards Multiple Destinations (MDLDF).

In the particular case where the arc-delay functions are continuous, piecewise-linear functions,
we shall add the prefix “PWL-" to the identifier of the corresponding problem to be solved.
Similarly, if all the arc-delay functions are linear, we shall denote this by a “LIN-" prefix. For
example, PWL-SOEAT, LIN-SDLDT, PWL-SOEAF, LIN-MOEAF, etc.

3.1. Linear and PWL Arc-Delays. In this work we consider each arc-delay function is a piece-
wise liner, continuous, nonnegative function of the departure time from the arc’s tail. Due to
the assumption for periodicity, we are only provided with the restriction of the function within a
single period. That is:

A tutpg, tw €[0,2]
)\a'tu—‘y-/,[,a7 tuE[a,ta]
(10) Va = uv € A, Vt, € I, D[a|(t,) = 2 2 €tz

Af, tut Pk, tu € [t%(afl’t(ll(a =T]

For any other departure time t,, ¢ II, we assume that B[a](tu) = B[a](tu mod T'). We denote by
T[a](t) and 77 [a](t) the corresponding step functions assigning the proper constant values for e
and 77%, in order to express the pwl-function B[uv](t) = ?[a](t) -t+ W [a](t). The corresponding
(pwl) arc-arrival-time function is Arr{uv](t,) = (1 + X)[a](tu)) -ty + 1 [a)(t,). For a walk (path)
p= (a1, - ar) € Poq from the recursive definition, cf. equation (4), we know that V1 <i < k:

(11) Arrlpr :](t)
Arrlan)(t) = (1+ X[aa)(®) -t + Fla)(8), =1

Arr{a;)(Arr[pri—1](7)), i>2

=t1,4-1

= [1+ Nail(tri-1)] - Arrlpria)(7) + 7lal(tioa)

=1 = [+ Nadti)] - (L4 Klprisa)(0)] - ¢+ Mpyia](0) + 7 lai)(fri-1)

= [1+4 7[%]@1,1‘—1)] 1+ X)[pl,i—l](t)] U

= 1+ A [p1,:](%)
— kY W
+ 14 XNag(t1i-1)] - Mp1ia](t) + 7 [ai](t1,i-1)

= Mip:,](¥)

N
The succinct representation of D[a] is given by a collection (ordered list, by increasing time values)
of triples:

(No, Ze, T ie{l,..., Ka})

7

where the linear function describing the i—th leg of B[a] is X)f -t + ¢ and its valid interval is
[7;’71, ?3] (we assume that 78 =0 and 7%@ =T).

It is now relatively simple to determine the reverse arc-delay functions. Assume an arbitrary leg
of the forward arc-delay function B[a] of a = uv corresponding to departure time t,, from wu, that
is determined by (T[a] (tu), 7[a](t,)). Then, assuming t, is the arrival-time at v, it must hold
that ¢, — t, = B[a](tu) = T[a](tu)tu + Wla)(t,). The corresponding reverse arc-delay function
<5[&] is given by another linear function, but still indicates the same delay of the very same arc:

ty —ty = (B[a] (ty) = X[a](tv)tv + & [a](t,). Therefore we have:

ty = tu+ Dlal(ts) = 1+ X|a](te))te + 7 lal(te)

Jo 14X [a] (b)) >0 +/ t. — wlal(t
= t, = 1 [a)(ty)

Consequently, we can compute the reverse arc-delay functions:

(B[a](t) — ot —t by — ﬁ)[a]“u) A [a](tu>tv + ﬁ)[a](tu>
’ ST 1 Nt 1+ Xa](ta)
__Xalt) Aty _ 51, -
(12) = 1+X}[a](tu) ty, + 1—}—?[@](15“) /\[](tu) ty + :u[](tv)
=N [a](ty) =T [al(ty)

This implies that for each leg of Z_))[a] there is a corresponding leg of 5[a], which is easily computed
—

according to equation (12) in time linear in the representation of D[a]: It suffices to check the

— — —

A [a] and 7'[a] values only at the breakpoints of D[a], in order to build Da]. The continuity of

Z

D]al], along with the FIFO property, assure that also 5[@] is a continuous pwl function expressing
exactly the same delays of a, only now expressed as functions of arrival-times at the head. An
example for the reversion of the pwl continuous (periodic) function of figure 1 was demonstrated
in figure 2.

4. How 1O SOLVE PWL-SOEAT anp PWL-SDLDT

As already mentioned (cf. Proposition 2.3), when the (strict) FIFO property holds, subpath
optimality holds also in time-dependent instances. Simple variants of Dijkstra indeed work also for
the computation of shortest od—paths and earliest-arrival-time values (for given departure time
from origin) in any time-dependent network possessing the FIFO property [2]. We denote such
a time-dependent variant by TDD. To avoid tricky situations in which the algorithm (even for
static networks) might fail, we suppose that all the arc-delay functions are always non-negative.
Put it differently, we consider as the actual arc-delay to be the maximum of zero and the declared
arc-delay function, for any departure time from the tail.

4.1. Evaluating Arc Delays. During the execution of TDD in a FIFO network with (non-
negative) arc-delay functions, the delay value of every arc has to be estimated upon its (unique)
relaxation, when its head is settled. For LIN-SOEAT this would definitely have cost O(1). The
case of PWL-SOEAT is a little bit more complicated: When referring to the description (A— and
u— values) of an arc-delay function for the arc a = uwv that is currently being relaxed for a given
departure time t, = Arrfo,u|(t,), the arc-delay evaluation operation is not constant anymore,
but costs either O(log(K,)) (e.g., by maintaining a binary search tree of breakpoints) or even
O(log(log(K,))) if one employs more advanced data structures (e.g., fast tries of breakpoints) in
order to determine the appropriate leg of the (pwl) arc-delay function D[a] which is appropriate
for t,. K, is the space-complexity (i.e., the number of breakpoints) of D[a]. Since every arc is
relaxed at most once, in overall TDD will have time-complexity O(nlog(n) + m - log(log(Kmax)))
to solve PWL-SOEAT, where K.x = maxgca K.

4.2. Solving SDLDT. In order to solve either LIN-SDLDT or PWL-SDLDT, the arc delay
functions, (i.e., we consider and then run TDD, the only differences being that:

e Within @ the objects are ordered in decreasing departure-times from the tails of the arcs.

e Each Q.pop() operation retrieves the object with the maximum key.

e Relaxation of arc vu € Z occurs during the settlement of the tail verter v, when the
subtraction of the reverse-arc-delay value <l—)[uv](tv) from the actual arrival time ¢, at v is
greater than the current value of vertex v in Q.

4.3. Instantaneous Descriptions of Earliest Arrival Functions at Sampled Points. As
mentioned in [2], a slight modification of Dijkstra that relaxes vertex labels according to the
temporal arc-travel times of their incoming arcs, depending on the departure-times from their
heads, works perfect in time-dependent networks possessing the FIFO property, for arbitrary (but
given) departure-times t, from the origin o. Eventually, the labels of the vertices reachable from
o denote the earliest-arrival-time values, when one departs from o at the given departure time t,.

Our purpose in this subsection is to explain how one can gather additional information, con-
cerning the instantaneous functional descriptions of the earliest-arrival-time functions at nodes

8

reachable from the origin o, with respect to an arbitrary sampling departure-time t,. In particular,
our goal is to provide the description of the (affine) earliest-arrival-time functions:

Arr~lo,v](z) = AT[o,v[(to) - ¥+ B [o,v](to), = € (to — 6, 1,]
Arrtlo,v](z) = AT[o,v](to) - x4+ BT [0,v](ts), T € [to,to +)
to each node v € V, for arbitrarily small 6 > 0.
The main idea is, after having executed TDD(G, D, o,t,), which created not only the earliest-
arrival-time values at the final vertex labels L[v], but also the shortest-paths tree T assuring
them, to execute a BFS scan in T (starting from the root o) in order to recursively compute the

above mentioned functional descriptions of earliest-arrival-time functions. Before describing the
appropriate formula, we need some additional notation. The set

Plo,v](t,) = {u € V : (u,v) € AN L[v] = L[u}] + D[ulv](L[u}])}
contains all the parents of v in shortest ov—paths with departure time t¢,.
A*[o,0](t,) =1, B¥[o,0|(t,) =0
Plo,v](t,) = {u}, for some u €V : /% unique shortest ov—path parent for departure-time to %/
AFo,v](to) = (1 + X*[wv](Arro, u](t,))) - A*[o, u](to)
B*[o,v](to) = (1+ A [uv](Arr*[o, u](t,))) - B*[o, u](to) + p* [wv] (Arr=(o,u](t,))

‘P[O7 ’U] (to)‘ >2: /* multiple shortest ov—path parents for departure-time to */
A~ [o0,v](to) = maxye plo,v](t,) {(1+ A7 [wv](Arr~[o,ul(t,))) - A7 [0, ul(to)}
B (to) = minye plo,v)(t,) {(1 + A7 [wv](Arr~[o,u](to))) - B~ [0, ul(to) + p~ [uv](Arr~ o, u](to))}
(o) =

ATo,v](to) = minye ppo,v)(t,) {(1 + AT [uv](Arr o, ul(t,))) - AT [0, ul(to)}
B*[o,v](to) = maxueppo,v)t,) {(1+ AT [uv](ArrTo, ul(to))) - B¥[o0,ul(to) + p* [uv](Arr*[o,ul(to))}

where the arc-travel-time function of an arc a = uv may also have a prior-description (A~ [uv], u~ [uv])
and a post-description (AT [uv], pT [uv]), if we depart from u at a breakpoint time of a.

Proposition 4.1. Consider a time-dependent instance (G = (V, A), (Dla] : [0,T] — Rsp)aca) with
strictly positive arc-travel-time functions. Assume that the instantaneous functional descriptions
of earliest-arrival-time functions are computed as described, after the completion of the time-
dependent Dijkstra run with departure time t, from the origin, by considering the vertices of the
graph ezactly in the same order as they were settled (i.e., as if we scan the shortest paths tree in
bfs order, with the vertices of each level ordered by increasing settling times). Then it holds that:

Arr~[o,v)(z) = A7[o,v](ty) - & + B [0,v](ts), = € (to — 6,10)
Arrtlo,v)(z) = At[o,v](to) -z + BT [0,9](ts), T € [to,to+)
to each node v € V, for arbitrarily small 6 > 0.

Proof. The explanation of this proposition is based on an inductive argument on the vertices whose
functional descriptions have already been computed. The basis of the induction concerns the root
itself, whose functional description is trivially correct. Assume now that all the vertices that have
been processed so far already have the correct instantaneous descriptions of their earliest-arrival
functions. Consider the next vertex vy € V to process. Let Vi = {0 = v1,v2,...,05-1} be the
set of already processed vertices. Clearly, V1 < i < k < j < n it holds that L[v;] < Lfvg] <
L[vj], by correctness of time-dependent Dijkstra. Due to the positivity of the arc-delay values, it
certainly holds that P[o, v](t,) may only contain nodes from V},, whose instantaneous descriptions
of earliest-arrival-time functions. In case that Plo,vi|(t,) = {u} for some vertex u € V, there is
a sufficiently small 6 > 0 such that w is the unique shortest-path parent of vy, for all departure
times t € (t, — J,t, + &), by continuity of the earliest-arrival functions. Thus, by the (inductively
assumed) correctness of the instantaneous functional description for vertex u’s earliest arrival, it
certainly holds that v,’s functional description is also correct. When |P[o, v](t,)| > 2, then for
each u € Plo,v;](t,) we have a different earliest-arrival-time-via-u function, Arr® o, v|u](t). The
recursive description of these functions, based on their unique choice for a parent of v, are given
9

in equation (11). All these are affine functions that meet at the point (¢,, L[v]). We want to
express Arr¥*[o,v] around t, as the minimum over these affine functions. Clearly, Arr~[o,v]()
has the largest slope and the smallest constant, whereas Arr™|[o,v](t) has the smallest slope and
the larger constant among these affine functions, as shown also in the following figure: Il

!

>

i

8

£

= L[v]

2

= vy,

‘;](47)*><

£ %o
= a7
5)

v

T
departure time from o

F1GURE 3. Instantaneous functional descriptions of the earliest-arrival-time func-
tion around the sampling departure-time ¢, from the origin.

4.4. Time Horizon of Combinatorial Structures of Given Departure Times. After run-
ning TDD for a given departure time ¢, and consequently computing the instantaneous functional
descriptions of the earliest-arrival functions to destinations, our last task is to determine the time
horizon t, > t, until which this information will remain valid. The reasons for such a change
might be either a future arc-delay breakpoint activation, or the effect of a minimization operation
at a destination vertex. Our approach for this computation is inspired by the output-sensitive al-
gorithm of Foschini et al. 7?7, which introduced the related notion of certificates. The time-horizon
that we seek is exactly the earliest certificate failure that we shall discover in the graph.

In order to discover these discrete points at which the combinatorial structure (shortest path
tree) and / or some earliest-arrival-time functions change (due to appearance of new breakpoints),
we compute a set of certificates (one per vertex and edge) to indicate the next failure time of some
earliest-arrival function, triggered by a particular element of the graph as if nothing else would
change in the future.

The notion of minimization (vertex) certificates, one per vertex v € V, provides estimations
on the earliest future departure-time ty4[v](t,) from the origin with respect to ¢,, at which the
shortest ov—path would change, due to the application (at v) of the minimization operation at the
earliest arrival functions via different parents, assuming that no other functional description would
change in the graph. Similarly, the notion of primitive (arc) certificates, one per arc a = uv € A,
indicates the projection ¢4 [a] (to a departure-time from the origin) of the next breakpoint-time
(after Arrfo,u](t,)) to the arc-travel-time function Dla].

In particular, assume that for every vertex v € V its in-neighborhood is IN[v] = {u € V :
uv € A} and let for convenience u,, = p[v](t,) be the current parent of v in the shortest paths tree
SPT]o](t,) for departure time t,. Recall that the instantaneous earliest-arrival-time-via functions
(starting from departure-time t,) are determined as follows:

Yu € IN[v], Arrtio,v|u](t) = ArrTo,u](t) + DT [uv](ArrT o, u](t))
= (14 MX[wv](Arrtio,u)(t)) - AT [o,u](t,) - t
L+ AT [wo](ArrFlo, ul(1)) - B o, ul(te) + " [uv](Arr™ [o, u](t))
where, Arrt{o,v](t,) = Arrt{o,v|u,](t,) < Arrt{o,v|ul(t,), Yu € IN[v] \ {u,}. Assuming that
the recursively called earliest-arrival-via functions at Arr*[o,v|u](t) : v € IN[v] would remain

affine from ¢, and beyond, the next minimization certificate at vertex v is relatively simple to
10

compute: It is the earliest point tsq:[v] > ¢, (if any) at which any of the (suboptimal at t,) alter-
native earliest-travel-time functions become equal to the value of Arr[o, v](¢squ[v]). For simplicity
in notation we drop the dependence of all the functional descriptions from the departure-time
from the orign o (for earliest-arrival functions), or from the departure-time Arr*[o,u|(t) from the
tail u of arc uv: Yu € IN[v] \ {uy},
At[o,v] < (14 AT[uv]) - At[o,u]
+ o0, V
BT[o,v] > (1 + AT[uv]) - BT[o,u] + pH[uv

traivlul(ty) = [0, v] = ([uv]) [0, u] + p [uv]

14+ T [uw])-BT o,ul+ +iuv]—Bt 0,v .
(Ai[o,]g]—(l[-i-)\l[zﬁ)])[-Alr[o,u][L otherwise.

The certificate failure of vertex v is then the earliest failure indication from all the possible alter-
native routes to reach v:

13 trair|V|(to) = inf
(13) fait [v](to) vern)

{ traulvfu](to) }

We must also deal with the future primitive (arc) breakpoints of the earliest-arrival functions,
which are indeed caused by the fact that the arc-travel-time functions are themselves piecewise
linear. For this reason, for every arc a € A and departure-time ¢, from o, we must know the
closest future departure time from o (if any) for which the earliest arrival time at tail[a] is the
time-coordinate of a breakpoint in D[a], assuming that no other breakpoint would happen to affect
the earliest arrival function at tail[a]. We call this departure time from o a primitive certificate
for arc a. This is defined as follows:

(14) trairla](to)
B +00, Altaillal(t,) - t, + Bltailla]|(t,) > t§,
B min {¢ > t, : Altail[a]](t,) - t + Bltailla]](t,) € {t{,...,t} }}, otherwise.

It is mentioned that, in order to compute the instantaneous earliest-arrival-time functional
descriptions and the tentative certificate failure times, one has to perform two sequential passes
(in BFS order) over the vertices of the shortest paths tree produced by the execution of the time-
dependent Dijkstra. This is because the first pass will compute the earliest-arrival-time functions,
and only then can one (in the second pass of the same tree, in any order) recalculate the correct
values of all the tails of arcs headed from vertices of the subtree. Figure 4 gives a brief explanation
of the necessity for two passes.

11

Updated Arr[2]
Updated tfail[2]

FIGURE 4. Explanation of the necessity for two passes of the acrs headed by
vertices in the subtree of the graph element causing the current certificate failure.
Black lines indicate tree-arcs in SPT[0](t,). Red/Blue arcs indicate non-tree arcs.
The assumption is that the next certificate failure occurs due to vertex 2. The
(green) subtree routed at this vertex is the one whose combinatorial structure is
affected. Red (non-tree) arcs have their tail in this subtree rooted at vertex 2, and
blue (non-tree) arcs have their tail outside this tree. Therefore, the functional
descriptions and/or certificate at the read arcs and at their heads have to be
updated, but no update is necessary due to blue arcs. Solid arcs indicate that the
earliest-arrival functional descriptions at the heads have already been updated,
or remain untouched. Dotted arcs indicate that, despite the necessity for update,
this has not been done yet by the (first) BFS pass in SPT[o]. A node can update
its certificate only when all the incoming arcs are solid. Otherwise, some of the
functional descriptions are outdated.

12

5. APPROXIMATION ALGORITHMS FOR SHORTEST-TRAVEL-TIME (DELAY) FUNCTIONS

In the present section we shall deal with the problem of providing (the explicit representations
of) shortest-travel-time functions in a time-dependent instance. In particular, we shall deal with
the following problems:

Definition 5.1. Time Dependent Delay Approximation Functions (TDDA)
INPUT : Directed graph G = (V, A).

(0,d) € V x V: An origin-destination pair of vertices.

O CV: A subset of potential origin vertices.

Ya € A, B[a] :R — Ry . The forward arc-delay (pwl) functions.

SPTDDA : Provide (the explicit representation of) an approximate shortest-travel-time
(delay) function Do, d] for D]o,d), that will assure the following approzimation
guarantee: Vt, € [0,T), Do, d|(t,) < Dlo,d](t,) < (1 +¢€) - D[o,d](t,) .

SOTDDA : Provide (explicit representations of) approzimate shortest-travel-time (delay)
functions Dlo,v] for all v € V', that will assure the following approzimation
guarantee: Yv € V, Vt, € [0,T], D]o,v](t,) < D[o,v](t,) < (1+¢) - D[o,v](t,) -

Notation: The representation of the entire output will be denoted by DJo, *|.

MOTDDA : Provide (explicit representations of) all the approzimate shortest-travel-time
(delay) functions Dlo,d| for any origin-destination pair of vertices (0,v) €
O x V., that will assure the following approzimation guarantees: Yo € O, Yv €
V, Vt, € [0,T], D[o,v](t,) < D[o,v](t,) < (1+¢) - D[o,v](t,).
Notation: The representation of the entire output will be denoted by D[O,|.

The main criteria for the quality of solutions to the above mentioned problems are: (i) the
polynomial-time construction of the required functions, and (ii) the required storage for the pro-
duced representations. Focusing only on (ii), one could have asymptotically optimal solutions,
assuming prior knowledge (or, paying for the required computational cost and space to construct
them) of the exact delay functions. For example, the technique of Imai and Iri [4] assures that
the space-complexity (number of breakpoints) of the produced approximation function of a pwl-
function is asymptotically optimal. Nevertheless, it is indeed required that the original function
to approximate is a priori given. This is not the case in our setting and it would probably be pro-
hibitively expensive to construct the exact delay functions before space-optimally approximating
them. Therefore, we have to be based only on (polynomial-time computable) samplings of the
exact functions, in order to produce (as fast as possible) the required upper approximations, using
as little space and assuring as good approximation guarantee as possible.

Since we wish to avoid computing the exact shape of Do, d] for a given od-pair, we need also
a lower-bounding point-to-point approximate distance function for the same time-window:

(15) Vi, € [0,T], (1 —¢€) - D[o,d|(t,) < Dlo,d|(t,) < Do, d](to)

Having two (guaranteed upper and lower) approximations Do, d] and DJo,d] of Dlo,d] in the
time-window of interest and an approximation guarantee between them:

(16) Vto € [07 T]? D[Ov d] (to) S (1 + 6) : Q[Ov d] (to)
would assure us that D[o,d] < (1 + €)D]o,d] is the required upper-approximation and D|o, d] >
(1 — 1%—5) DJo,d] is the required lower-approximation of DJo,d], without even knowing (except

for the explicitly sampled values) the actual shape of the function that is approximated.

As in Foschini et al. [3], we start by presenting an approximation algorithm for subintervals
[ts,tf] € [0,T] in which Do, d] is a concave function. Foschini et al. then project all the K arc-
delay function primitive breakpoints to (latest) departure-times (the so-called primitive images)
from the origin o in [0, T], and apply the proposed approximation algorithm for every subinterval
between consecutive primitive images. In this case, in each subinterval all the arc-delay func-
tions are affine and thus path-delay functions, as compositions of affine functions, are also affine
functions. Finally, shortest-travel-time function Do, d] is a concave function, as the minimization

13

operator on a set of affine (path-delay) functions. Indeed, in order to preserve concavity of DJo, d],
one only has to project to departure-times from the origin only those arc (primitive) breakpoints
that might spoil the concavity of arc-delay functions. Figure 5 demonstrates such breakpoints of
an arc-delay function.

head[uv]

earliest-arrival times at v

A4

0 t bt t i
departure time from u = tail[uv]

FIGURE 5. Concavity-spoiling breakpoints of arc-delay functions. Only the (red)
primitive breakpoints 1, t5 spoil the concavity of D]uv], and possibly the concav-
ity of D[o,d]. These breakpoints have to be projected (as primitive images) to
departure-times from the origin o, for every arc in the network. Observe that the
(positive) slope at time ¢; increases, while the (negative) slope at ¢5 also increases.
In all other (non-concavity-spoiling) breakpoints the arc-delay slopes decrease.

This information (of concavity-spoiling primitive images) can be preprocessed and then be
considered as part of the input, or can be computed prior to approximating the unknown function
Do, d] by applying backwards time-dependent Dijkstra probes from all the tails of arcs possessing
breakpoints in their delay functions. From now on we focus on time-subintervals [ts,t¢] C [0,T]
that are between consecutive primitive images of all these concavity-spoiling arc-delay breakpoint
times, for all arcs in the network. For any such subinterval, during which any arc-delay function is
indeed an affine function, we shall provide the required upper-approximation of D]o, d]. The union
of all these approximating functions will then be the upper-approximation of D|o,d] in the entire
domain [0,T]. So, fix a departure-time interval [ts,t] from the origin, during which all the arc-
delay functions are affine (rather than pwl). For any vertex v € V reachable from an origin-vertex
0, let Diax[o,v] = max,cps, ¢, 1{D[0,v](t)} and Duin[o,v] = minsepq, ¢ ,1{ Do, v](t)}. It is easy to
observe that, due to the linearity of the arc-delays, the (actual) shortest-travel-time functions
Do, v] to be approximated are pwl, continuous, concave functions in [ts,tf]. The concavity is
due to the existence solely of minimization breakpoints (at vertices), and no primitive (arc-delay)
breakpoints at all. Therefore, the sequence of partial derivates (i.e., constant slopes of affine legs)
of each function Do, v] is non-increasing within [ts,t7]. Also recall that the strict FIFO property
is assumed to hold (cf. 8, with strict inequality holding).

It is not hard to see that the maximum value of D|o, d] within [ts,¢s] cannot exceed the value

2- Dlo, d] (t'*;tf), with respect to mid-point of the time-window of interest:

Proposition 5.1. Y(0,d) € V x V, Dyaxl0,d] < 2- Dlo, d] (#)

Proof. We exploit the assumptions for DJo, d]’s non-negativity and concavity. Observe that, for
any ¢ € [ts,ts], its symmetric point ¢ = ¢, +t; —t with respect to t‘*;tf is also in [t,, tf]. Therefore,
by the definition of concavity and the positivity of Do, d] we conclude that V¢, ¢t =ts +t; —t €

LThis fact was also mentioned, without any justification, by Foschini et al. Here we confirm it by providing a
quite simple and clear proof.

14

[ts7tf]7

maX{D[Ovdl(t) D[O,d}(f)} - Do d|(t) + Dlo,d](t)
2 2 = 2

Dlo,d] (if) — Dlo,d] (t;tf>

2. Dlo, d] <t542rtf).

IN

— max{Dlo, d|(t), Dlo, d](t)}

IA

g

Due to being a concave chain, the minimum Dpn[o, d] within [ts,¢¢] is attained at one of the
endpoints. Therefore, although we do not want to compute explicitly Do, d], we already know
that it is enclosed in the following bounding box:

(17) BBlo,d)(ts,t7) = [ts.ts] x |min{Dlo, d|(t,), Dlo,d|(t;)} .2 Dlo,d| (t;tfﬂ

This bounding box can be determined by just 3 calls of TDD per od-pair. On the other hand, if
we wish to do the same for a particular origin vertex o € V' and all the vertices reachable from it,
we still need only 3 calls of TDD. Recall also that each call of TDD from a given origin-vertex
o € V does not only provide the earliest-arrival-times (and also the shortest-travel-times) for a
given departure-time ¢, from o, but also the instantaneous functional descriptions of Arr{o,v] per
vertex in the shortest paths tree rooted at o, SPT[0](t,). In particular, for some sufficiently small
0 > 0 and each vertex v € V it holds that:

Vt € [to — 6, 0], Arrlo,v](t) = A7 [o,v](t) - t + B~ [0, v](t,)
Yt € [to,to + 0], Arrfo,v](t) = AT[o,v](t,) - t + BT[o,v](t,)

These functional descriptions are recursively determined after the execution of TDD for departure-
time t, (cf. subsection 4.3). Finally, by the certificates structure we are also able to know the
time-horizon Tfm'l(to) up to which the current solution is valid (cf. subsection 4.4).

5.1. Approximating Delay Functions for a Particular OD-Pair. We shall now present an
algorithm for computing an upper and a lower approximation of D]o,d], D|o, d] and Do, d] which
are within a factor of 1 + € of each other, for a given OD-pair (0,d) € V x V. It is based on
an algorithm proposed by Foschini et al. [3, Section 5.3]. Our algorithm is a refinement of that
approximation technique, based on a careful and detailed analysis that will help us in being more
accurate in the description of the algorithm itself. More importantly, this accurate estimation
of the maximum error in the approximation guarantee will help us also assure that the space
complexity of the returned upper-approximation is at most double the space complexity of any pwl-
approximation of DJo, d] that maintains the same approximation guarantee. This is guaranteed by
the approach of Foschini et al. only for one part (the bisection) of their approximation algorithm.
There is no guarantee at all about the first part of the algorithm which samples fast-growing delay
functions. Indeed, it is straightforward to create instances in which the approximation algorithm of
Foschini et al. fails arbitrarily bad with respect to the minimum required number of breakpoints,
when for example DJo,d] is an “almost linear”, rapidly growing function with very small starting
delay value. We achieve a global guarantee for our space complexity, exactly due to the careful
analysis and measurement of this absolute error which allows us to discard all the unnecessary
sample points. The time-complexity of our algorithm is the same as that of Foschini et al., since
the set of sampled points is produced similarly.

5.1.1. Upper Bound on the Required Space Complexity. A simple way to get an upper bound
on the minimum number of required sample points for a guaranteed (1 + ¢)—approximation of
Do, d], is the following: If we knew the explicit description of DJo,d], we could use as sample
points only the intersection points of DJo,d] with parallels of the time axis at travel-time values
Duinl0,d], (1+€)Dminlo,d], (1+€)?Duinlo,d], ... (which intersect D[o, d] in at most two points).
The interpolation of these sample points would then provide Do, d], whereas Do, d] would be
the lower envelope of the tangents of Dlo,d] at the sample points. Clearly the required guarantee
expressed in (16) is fulfilled, by construction of D[o,d] and D[o,d]. The following figure shows
15

such an example, where D[o,d] is shown by the blue line, D|o,d] is the yellow line, and Do, d] is
the orange line:

[L o Y S———

(14£)* Dy

(1+£)Dyi
(1+€)Dpint-
Dy &%

»
>

bt & t ts t

Therefore, we conclude that a space-optimal upper approximation D" [0, d] of D|o,d] would require
at most:
—k Dmax [0, d]

(18) 5P fo.d)| <4+ log, . (P20

interpolation points (E* [0, d] may have at most twice as many breakpoints as the sampled points).
5.1.2. The Technique of Foschini et al. Clearly, we do not wish to explicitly compute D]o,d]
because this is already too expensive. The main idea proposed in Foschini et al. [3] is that, since we
can easily determine the bounding box BB|o, d](0,T) of DJo,d], it would suffice to sample D]o, d]
at particular points of either the horizontal axis [0, 7], or the vertical axis [Dmin[0, d], Dmax[0, d]],
in such a way that an overall approximation ratio of 1 + ¢ be assured between the produced
approximations D[o,d] and D]o,d]. The choice of axis to sample depends on the slope of the
function being sampled. The goal is always to sample the faster changing axis, in order to
assure the approximation guarantee. Therefore, so long as the shortest-travel-time slope (i.e., of
function Do, d]) is greater than 1 we shall keep sampling the vertical (travel-time) axis, as follows:
Departing from o at time t5 = ty, we compute a forward call of TDD, to get an earliest-arrival-
time at d, to+ D|o, d](tp). We then carefully delay the arrival-time, ie, we consider the arrival-time
t1 4+ Do, d|(t1) = to + V1 +¢€ - Dlo,d|(to) and we perform a backward call of TDD, in order to
determine the proper (latest) departure-time ¢; from o. This procedure is repeated until the slope
of Do, d] drops below 1, in which case the first phase of the approximation algorithm is stopped.
Figure 6 demonstrates exactly this phase. The second phase of Foschini et al.’s approximation

to FowaraDijksie—»>- 1o + D[o,d](%)

}

) ~e—BEskwEDIRsE— to + (1+2)Y2 Dlo,d](to) = t1 + D[o,d](t)

}

t, -a—BaskwEDiksTE— (1 + (1+:)V2 D[o,d](t1) = t + D[o,d](t2)

o}
o}

FIGURE 6. The first phase of Foschini et al.’s aproximation algorithm. The for-
ward call determines an earliest-arrival-time at d (for given departure-time from
o) and each backward call determines the latest-departure-time from o (for given
arrival-times at d).

algorithm is a typical bisection that keeps bisecting the time-axis until the required approximation
guarantee is achieved.

When the sampling procedure is complete, we consider D[o,d] to be just the interpolant of
the sampled points of Do, d], while Do, d] is the lower envelope (minimum) of all the supporting
lines (tangents) of D[o,d] at the sampled points. Figure 7 provides an example of a shortest-travel
time function and the two bounding approximations. The facts that, with respect to DJo,d], (i)

16

HEE
>

to1 t12 t23 B3
to t t 13 14

FIGURE 7. An example of the considered pwl approximations Dlo,d] (orange
line) and DJo, d] (yellow line) of the pwl function Do, d] (blue line). The sampled
points of Dlo, d] are {(to, Do), (t1, D1), (t2, D2), (t3, D3), (t4, D4)} and they are as
the interpolation points of D[o,d]. D[o,d] also has some additional interpola-
tion pOthS {(t0717 1)071)7 (t172, DLQ), (t273, Dg’g), (t374, D374)}, at the intersections

of consecutive tangets of the sampled points.

Do, d] is the required lower bound (never exceeding it), and (ii) Dlo,d] is the required upper
bound (always above it), are simple consequences of the concavity of Do, d] (since all arc-delays
are linear).

5.1.3. Querview of our Refined Approximation Technique. We are now ready to describe our sam-
pling procedure, namely the algorithms OD _ PWL1 (see figure ?7) that provides the explicit
representation of the breakpoints of DJo,d], and OD_PWL2 (see figure ??) that provides the
breakpoints of D|o,d], in such a way that both the required approximation ratio of eq. (16) is
guaranteed and the output is indeed asymptotically space-optimal. OD_PWL1 is again split
in two distinct (sampling) phases, depending on the slope of D[o,d] at the last sampled point.
The first phase again samples the delay-axis. But this time, based on the exact computtion of
the worst-case absolute error that may occur, we roughly make half the samples compared to
the method of Foschini et al., while keeping (as breakpoints of D) among them only those that
are really necessary in order to assure the approximation guarantee. Additionally, we are only
interested in candidate breakpoints which are beyond the next certificate failure ¢y, a quantity
that can also be computed during each Dijkstra-run for the next sample point. This is safe be-
cause until ¢, we already know that D[o,d] will be identical to Dlo,d]. Figure 8 provides an
overview of the basic idea. The second phase samples the time-axis using bisection, but again we
use the exact expression of the maximum absolute error, in order to determine whether to stop
or continue bisecting the time axis. We provide here a complete, self-contained analysis, whose
crucial element is of course the exact estimation of the maximum absolute error (ie, maximum
distance between Do, d] and D[o, d]) during our construction.

5.1.4. Correctness of Our Approximation Technique. We shall now demonstrate that it is indeed
the case that Do, d] is an upper approximation of Do, d], with the required approximation guar-
antee. For sake of simplicity, we shall drop in this subsection the reference to the OD-pair (o, d)
that we consider and we shall write D, D and D respectively from now on. We shall assure that
the linear interpolant D is indeed a (1+ ¢)—upper bound, not of D[o, d] (whose exact shape we do
not know), but of of the linear interpolant D, in the time-window [ts,t¢]. In particular, we shall
demonstrate inequality (16) holds.

We start by upper-bounding the absolute error between D and D, and consequently we study
the performance guarantee of the algorithm. The following claim is used:

Proposition 5.2. Fiz any continuous (not necessarily pwl) concave function D : [e,d] — Rs o on
a (nonempty) time interval [c,d] C Rs o, with right and left derivatives at the endpoints denoted
17

to—Fonaraikss—»- ¢ + D[o,d](to)

}

11, ~a—BakwaraDksEE— N AX{ 11, 1o+ (1+e) Do,d|(10) } MaxabsEror <2 Dlod(t)
o

o
o

1 = by -~ BEREADIER— 1o + (1+¢)* Dlo,d)(t0) = 11+ D[o,d](t1) Mastbstrror <e oy

}

11)+ 1 - BECRWERADIRSTE— /o + (1+2)" "1 D[o,d](10) MaxAbsError > & D[o.d](to)

}

17,1 e BackwaraDikstE— | AXY 7, 1+ (1+2) D[o,d|(t1) } MaxbsError <z Dlode)
o

o
o

FIGURE 8. Overview of the first phase of our refined approximation technique.

A Q) A A =
3 &
.
D 3
&
o) <
Dias = D() N © <
_ _ hmar = D)
" A = B D, K
DL tc) 4)
W(m)) = c
D)
D(d) D(d)
D(c)|++9 D(c)|++9
;' m d > c m d c m d >
(@) A% (c)>A(d) =0 (b) 47(c) > 0> A(d) (©) 0= 4%(c) > A(d)

FI1GURE 9. Three distinct cases for upper-bounding the absolute error between
two consecutive interpolation points. The (upper bound on the) absolute error
considered is shown by the vertical (purple) line segment at point m of the time
axis.

by At (c),A=(d). Assume that A*(c) > A~ (d) and L = d — ¢ > 0. Consider the affine functions
(see also figure 9):

y(x) = ; T+ T ,
ye(z) = AT(c) (z—c)+D(c),
ya(r) = A7(d)-(z —d)+D(d).

Let Let (m = D(d)ij(\??rcc)'fXEC()d;d'A_(d),Em =y.(m) = yd(m)) be the intersection point of the
lines ye(x) and yq(x). For the pwl upper bound of D in [c,d], D(t) = min{y.(t),y4(t)} and the
linear lower bound of D in c,d], D(t) = y(t), the maximum absolute error is at most:
(m—c)-(d=—m) _ L-(A¥(c) = A"(d))

L - 4 '

MAE(c,d) = (A" (¢c) — A= (d)) -

Proof. By concavity and continuity of D, we know that the partial derivatives’ values may only
decrease with time, and at any given point in [c, d] the left-derivative value is at least as large as
the right-derivative value. Thus, the restriction of D on [c, d] lies entirely in the area of the triangle
{(e¢, D(c)), (m, Dy,), (d, D(d))}. The maximum possible distance (additive error) of D from D

MAE(e,d) = D(t) — D(t
(c,d) = max {D(t) ~ D)}
is at most equal to the vertical distance of the two approximation functions, namely, at most equal

to the length of the line segment connecting the points (m,y(m)) and (m, D,,)(denoted by purple
18

color in figure 9). The calculations are identical for the three distinct cases shown in figure 9. Let

A= M be the slope of the line y(z). Observe that:

D(d) = D(c) _ (Dm = D(c)) = (D — D(d))

A:

L L
_ m—c Dy—D() d—m Dn—D(d)
N L m—c L d—m
= T+ S A

Thus we have:

MAE(c,d) = Dy —y(m) = (Dm — D(c) — (y(m) — D(c))
= Af(e)-(m—c)—A-(m—c)=(AT(c) = A) - (m—c)
m—c¢)-(d=m) _ L-(A"(c) - A"(d))
L = 4 ’

since (m—c)+(d—m) = d—c = L and the product (m—c)-(d—m) is maximized at m = <t¢. O

= (AT~ A ()

We shall now prove the claimed quality of approximation provided by D and D, by demonstrat-

ing that D is indeed a (1 + ¢)—approximation of D between any pair of consecutive breakpoints
in D (D may have at most one more breakpoint between them). We shall prove this seperately
for consecutive points produced by Phase-1 of the sampling procedure (ie, while OD_PWL1.1 is
sampling the delay-axis), and then for the points produced by the Phase-2 (ie, while OD_PWL1.2
is sampling the time-axis).
CASE A: Consecutive breakpoints produced OD_PWL1.1. During this phase all the produced
sample points have positive partial derivatives (indeed, greater than 1), meaning that D is indeed
strictly increasing. Consider two consecutive breakpoints of D (t, Dy) and (tg+1, Di+1) produced
during OD_PWL1.1. Recall that the sampling procedure created a sequence of sample points
from (t, Dy), before eventually choosing one of them as the next breakpoint (tx41, Dg+1) of D:

fot =ty o

Diy = ti+(1+e)Dp—tik = MAEy < Dy = Dy, < Di
Djprre = o+ (1+ E)]:maka ik S, MAE;,, ...k <Dy
Dimax+1 = (1 + 6)jma,ﬂtl-Dk o t‘lilnax‘f’l — MAEimaerl > Dy

where, M AE} j, is the value of the max absolute error between the (confirmed) breakpoint (tx, Dy)
and the sample point (¢;x, D;x). The first sample point (¢1 5, D1,) always satisfies the required
quality of approximation, by construction. We keep looking for sample points, until the last one
(jmasskr Do k) that satisfies the required quality of approximation. Then we store it as the next
breakpoint (tx+1, Dx+1) of both D (in LBP) and D (in UBP). Additionally, in UBP (before this
new breakpoint) we also store the intermediate breakpoint (m, D,,,) as described in Proposition 5.2
for ¢ = t, and d = tg41. It is then straigthforward to assure that for any point ¢ € (tg,tr4+1) it
holds that:

D(t)—D() < MAE <eD; <eD(t)
=D(t) < (1+¢)D(t)

where the second inequality is by the fact that min,e, 1, ,) D(t) = Dy (see figure 9(a)).
CASE B: Consecutive breakpoints produced by OD_PWL1.2. Assume now that we are given two
consecutive breakpoints (tx, Dk), (tk+1, Di+1) of D with respect to the departure times from the
origin (which are also breakpoints ofiD) produced by the bisection phase, along with the ad-
ditional intermediate breakpoint (m, D) for D. By construction the bisection did not produce
another breakpoint for D between them, exactly because the maximum absolute error produced
satisfies the required approximation guarantee:

vVt € [tkathrl]; E(t) - Q(t) S MAE(tk,thrl) S e - min{Dk, Dk+1} S EQ(t)

=Vt € [tp,ter1), D(t) < (1+¢)D(t)

19

CASE C: Last breakpoint of OD_PWL1.1 and first breakpoint of OD_PWL1.2. In this case ob-
serve that in the last round of OD_PWL1.1 (after having produced (¢, Dy), the last sample
point before termination of OD_PWL1.2, say (¢;,D;) for some j > 1, still assures an ab-
solute error at most € - Di but it happens that the slope of D at that point falls below 1 for
the first time. This point is accepted both by OD_PWL1.1 and by OD_PWL1.2 (as the first
endpoint of the bisection, the other endpoint being (t¢, Dy)). Therefore, between (t, Dy) and
(tk+1, Dkt1) = (tjx, D) OD_PWLL.1 assures that V¢ € [ty tri1], D(t) < (1 +¢)D(t), as
required.

5.1.5. Time and Space Complezity of OD_PWL1. We now explore the time and space complexity
of OD_PWL1. We measure the space complexity by the number of breakpoints (i.e., |UBPJo,d]|)
that eventually have to be stored. The time complexity is measured by the number of time-
dependent shortest-path calls (e.g., calls of TDD) involved. We do this because on one hand it is
clearly that parameter which dominates the time-complexity of the algorithm, while on the other
hand its exact execution-time depends both on the implementation (Dikstra / speed-up heuristics,
etc.) and the characteristics of the graph instance (planar / bounded-genus graphs, directed /
undirected graphs, integer weights, etc.) that we consider.

Number of breakpoints produced by OD_PWL1.1. Assume that

LBPl[O7 d] = <(t07 Do) = (tS,DS)7 (tlle)a ceey (tgl,Dgl»

is the ordered list of ¢ + 1 breakpoints for Do, d] during this phase. Recall that for all the stored
sample points in the list the left and right slopes of Arr|o,d] are greater than 2 (except possibly
for the right slope at time ¢,). Therefore:

VO<k</6—1,35,>1: thor + Diy1 = th + (1 +€)7% - Dy >t + Dy + 2+ (tpy1 — tr)
1+¢e)it —1] - Dy
(19) =ty —te < I) 5]

We know (by the correctness of OD PWL1.1) that VO < k < ¢; — 1, Dp11 < Dipax. We shall
now provide also lower bounds, that will determine the required number of breakpoints: V0 < k <
gl -]-7 El]k Z]-7

Dyy1 = (1+¢e)? - Dy — (tig1 — t)

fx eq. (19) %/ 1 Je 41 izl g

| Dk+l>#.pk S ;5-Dk

2 2 k+1
= Dk-l—lZ(+E) 'Dk—12'-'2(1+g) Dy

Therefore, we conclude that:
¢
Duaxlo, d) > (1+ g) " Dumlo,d =
Dm X[O7 d] m b'e O d

It is now straightforward to conclude that the number of breakpoints of D[o d] created during
OD_PWL1.1 is:

Dinax|o, d]
(21) |[UBP1[o,d]| < 2|LBP1llo,d]| —1<1+4+2- 10g14/2 (D)

min [07 d]

As for the time-complexity of this phase, the number T'DSP1 of time-dependent shortest-path
probes (either forward or reverse) involved in OD_PWL1.1 is at most equal to the upper bound
on |LBP1Jo,d]| computed in equation (20). This is because this upper bound was computed under
the assumption that all sample points were producing breakpoints of D, ie, ji = 1 for each sample
point.

Finally, the space-complexity of OD_PWL1.1 is asymptotically optimal, due to the fact that
we choose to store in LBP1]o, d] only those sample points that are really necessary for guaranteeing
the claimed approximation ratio. This implies that any upper-approximation of Do, d] for this
particular time subinterval handled by OD_PWL1.1 has to employ at least one breakpoint for
every two consecutive breakpoints of LBP1[o,d], otherwise it will not be able to guarantee the

20

claimed approximation ratio. We therefore conclude that our number of stored breakpoints in
UBP1 is at most 4 times the minimum number of breakpoints required. Of course, one could also
store only the breakpoints of LBP1 and each time compute on-the-fly the additional intermediate
breakpoints of UBP1, in order to assure a factor of 2 away of space-optimality.

Number of sample points by OD_PWL1.2. Each bisection halves the time interval under consid-
eration. For initial interval (at the beginning of phase OD_PWL1.2) equal to L(0) <ty —t,, we
know that at the k—th level of the recursion tree the intervals have length L(k) = L(0)/2". Since
0 < At(c) — A= (d) < 2 (recall that the partial derivatives of Do, d] in this time window are in
L(k)‘(/ﬁ(z)—/\’(d)) < QL]C(%

[—1,1]), the absolute error is upper bounded by . In each interval (¢y,t3)

it holds that ty —t; > D2 — DL? where DL2 DL are the corresponding max- and min-delay

values in the time-interval under consideration. This implies that the bisection will certainly stop
at a level ¢o of the recursion tree at which

L(0) L(0)
MAE(fy) < < eDpnlond] = by > log, [——L) —1
(62) < oht1 =€ lo,d] = £2 > log, (eDmin[O, d]

i.e., when the absolute error falls below the safety level. We thus conclude that the depth of the

recursion tree produced by Phase-2 is at most equal to 5 = Llogz (%)J —1.

On the other hand, the parents of consecutive leaves (t1, D1), (t2, D2), (t3, D3) at the recursion
tree correspond to intervals [t1,t3] for which the maximum absolute error guarantee is greater
than D2 [0,d] > €Dpin[0,d], indicating that (in worst case) no pwl (1 4 &)—approximation
may avoid placing at least one interpolation point in the interval [¢, ¢5]. Therefore, the proposed
bisection method of phase OD _PWL1.2 samples again at most 2 times the minimum number of
interpolation points required for any (1 + e€)—approximation of D[o, d], when the maximum slope

of DJo,d] is upper bounded by 1:

Dmax [Oa d] 1 Dmax [07 d]
22 LBP2[o,d]| <2-1 —_— ol -1 — .
(22) LBP2od) < 2 tog . (G0) € o iow (T
As for the interpolation points of D, these may be at most twice as many:
Dmax) d
(23) |UBP2[o,d]| <2-|LBP2[o,d]| —1<4-log,,. (D[[Od]]>
min |0,

We now proceed with the time-complexity, we shall count the number T'DS P2 of time-dependent
shortest-path probes to compute all the breakpoints of D produced during the bisection. For each
breakpoint in LBP2]o, d], the corresponding number of (forward) TDSP-probes is upper-bounded
by the path-length leading to consideration of this point in the recursion tree of the bisection.
Any root-to-node path in this tree has length at most ¢5, therefore each breakpoint of LBP2[o, d]
requires at most o TDSP-probes up to its own sampling. In overall, the total number of TDSP-
probes to compute LBP2[o,d] is upper-bounded by the following inequality:

(24) TDSP2 < 0y - |LBP2o,d]| € (’)(log (E_I)Lrj:l)[o’d]) : élog (M))

time-dependent shortest-path calls. OD_PWL2 constructs U BP|o, d] from LB P]o, d] without any
execution of a TDSP-probe, it just sweeps LB P|o, d] once and adds the intermediate breakpoints
required. The time-complexity of this procedure is O(|LBPJo,d]|) and this is clearly dominated
by the time-complexity (number of TDSP probes) for constructing LBP|o, d] itself.

5.2. Approximating shortest-travel-times from a given origin. In this subsection we study
how to approximate the problem SOTDDA. That is, we want to provide an upper-approximation
Do, %] of a vector function D[o,+], in such a way that each coordinate D[o,v] is a (1 + &)-upper-
approximation of D[o,v], for every vertex v reachable from the origin. Analogously, Do,] is the
corresponding lower-approximating vector function that we wish to produce, in order to have a
measure of comparison between the upper and the lower approximation of the unknown vector
function DJo,] of shortest travel times from o. Our goal will be to provide the following bounds,

which act as our performance guarantee for the upper-approximating functions that we produce:

(25) Vo e ViV, >0, Dlo,vl(ts) < Dlo,o](t) < Dlo,vl(t,) < (1+¢) - Dlo, v](,)
21

Of course, one might consider the case of exploiting the previous methodology of point-to-point
approximations of shortest-travel-time functions, but this would clearly be a waste of time. Our
objective is to manage to produce the required upper-approximation with time complexity that
is comparable to that of a single-pair upper-approximation construction.

Again in this subsection we focus on the case of linear arc-delays. The extension to the case
of pwl arc delays is once more done by projecting all the primitive (arc-delay) breakpoints to
departure-times from the origin, and then approximating the required functions per subinterval
between consecutive primitive images.

5.2.1. The Case of Bounded Slopes. We first consider the case in which all shortest-travel-time
functions in the network have bounded slopes. In particular, we make the following assumptions,
which seem to be quite reasonable in realistic scenarios, as in road networks:

Assumption 5.1. The following assumptions are made for shortest-travel-time functions of the
network:

(1) All the arc-delay slopes are from a real interval (—1, Amax), for a given constant Apax > 0.
(2) The slopes of the shortest-travel-time functions are upper-bounded by a known (constant)
value Apnax. In particular:

Dlo,v](t1) — Dlo,v](t2) _

Vo € V,Vt1,te > 0:t) #£ta,—1 < >
t1 — 1o

We start with a generalization of the bisection method for single-pairs (cf. OD_PWL1.2) to the
case of a single-origin o and all reachable destinations from it. Our method creates concurrently
(i.e., within the same bisection) all the required approximate functions of D[o,] and DJo,].
This is possible because the bisection is done on the (common for all travel-time functions to
approximate) departure-time axis from the common origin o. The other important observation is
that, for each destination node v € V', we only keep as breakpoints of Do, v] those sample points
which are indeed necessary for the required approximation guarantee per particular vertex, thus
achieving an asymptotically optimal space-complexity of our method, as we shall explain in the
analysis of our approach. This is possible due to the fact that we have an exact expression for
the evaluation of the (worst-case) error of approximation (cf. Proposition 5.2) per destination
vertex. Moreover, all the delays to be sampled at a particular bisection point are calculated by a
single time-dependent shortest-path (e.g., TDD) execution. In particular, we keep bisecting the
departure-time axis, until the two bounding approximations D[o, %] and D[o, %] are guaranteed to
be within a relative error of € Dyin[o,], for all possible destination vertices. The time complexity
of this apprach will be asymptotically equal to that of OD_PWL1.2 for the more demanding
origin-destination pair.

SO_PWL1.2 is just a recursive call of the new bisection method SO_BISECT, which manages
to concurrently compute new breakpoints for all the shortest-travel-time approximations that
really need it. As already mentioned, the main trick is that we keep sampling the time-axis
(for departure times from the origin o) which is common for all the sampled shortest-travel-time
functions. Additionally, the sampling of all these functions is conducted by a single (forward)
time-dependent shortest-path probe.

Number of sample points by SO PWL1.2. Assume that we start with an initial interval L(0) =
ty—ts. Bach bisection again halves the current time subinterval under consideration. Therefore, at
the k—th level of the recursion tree all the (still active) subintervals have length L(k) = L(0)/2.
Since, for any shortest-travel-time function and any subinterval [¢1, 2] of departure-times from o,
it holds that 0 < A™[o,v](t1) — A™[0,v](t2) < Amax + 1, the absolute error between Do, v] and

L(k)'([\f“"ﬂ) < L(O)éﬁfz’“ﬂ). This implies that the bisection

Do, v] in this interval is at most
will certainly stop at a level £ at which

T (Amax+1)
20+2

Vv € V, MAE[o,v](f) <

< gDmin[Oyv](tS,tf) = ¢ > log, < T- (Amax + 1))) 9

€Dminlo, v|(ts, 5

Our assumption at this point is that any vertex v which is removed from the set M of active

vertices (exactly because its own absolute error is already small enough) keeps this upper bound

on its absolute error also in the subsequent levels of the recursive tree, although it is inactive at
22

them. We thus conclude that the height of the recursion tree is indeed:

0= Jras o (it) -

On the other hand, the parents of the leaves at the recursion tree correspond to subintervals
[t1,t2] C [ts,ts] for which the absolute error of at least one vertex v € V is greater than
€Dmin[0,] (t1,t2), indicating that (in worst case) no pwl (1+¢)—approximation may avoid placing
at least one interpolation point in this subinterval. Therefore, the proposed bisection method
SO_PWL1.2 produces at most twice as many interpolation points (to determine the lower-
approximating vector function D[o, %]) required for any (1 + ¢)-upper-approximation of DJo, *].
The produced (1 + &)-upper-approximation by SO_PWL1.2 uses at most twice the number of
sampled points:

(26)

Dmax O7U t57t 1 DmaX 071) t87t
Vv € V, [UBP[o,v](ts,t5)| < 4-log . (D : [[0 ’U]}((tv t;;) € 0(510g<D : [[0 v]]((t‘ t;;))

We now proceed with the time-complexity of SO_PWL1.2. Again we shall count the number
SOTDSP2 of time-dependent shortest-path probes to compute all the sample points during the
bisection. The crucial observation is that the bisection is applied on the departure-time axis.
Additionally, in each recursive call from [t1, ¢5], all the new sample points at the new departure-
time t,,,q = %, to be added to the breakpoint lists of the active vertices, are computed by a
single (forward) TDSP-probe. Moreover, for each vertex v, every breakpoint of LBP[o, v](ts,ty)
requires again a number of (forward) TDSP-probes that is upper bounded by the path-length
leading to the consideration of this point in the recursion tree of the bisection. Any root-to-node
path in this tree has length at most ¢, therefore each sample point of LBP2[o,v](ts,ts) requires
at most £ TDSP-probes. In overall, the total number SOTDSP2 of shortest-path-tree probes
required to construct LBP2[o, *|(ts,ty), is upper-bounded by the following inequality:

(27) SOTDSP2¢€ O(ma‘} {log2 (T (A + 1)) } L1og (Dmax [0, vl (ts, tf)))

vE 5Dmin[0a U](t&tf) € Dmin[oa U](t&tf)

forward TDSP-probes. We can also construct UBP2[o,*](ts,tr) from LBP]o,*|(ts,t) without
any execution of a TDSP-probe, by just sweeping once for every vertex v € V. LBP2(o, v](ts,ty)
and adding all the intermediate breakpoints required. The time-complexity of this procedure is
O(|LBP2[o,*|(ts,ts)|) and this is clearly dominated by the time-complexity (number of TDSP-
probes) for constructing LBP2[o,](ts,ts) itself.

5.2.2. Shortest-Travel-Time Functions with Arbitrary Slopes. We close our discussion on approx-
imating DJo, %] by providing a method (we call it SO_PWL1.1, in analogy to the point-to-point
approximations) that covers the case when some of the partial derivatives (slopes of affine legs in
the pwl functions) are only restricted to satisfy the FIFO property. In other words, there is no
upper bound in the arc-delay and shortest-travel-time functions in the network.

In the previous section we demonstrated how it is indeed possible to create (asymptotically
space-optimal) point-to-point pwl approximations to Do, d], even when this function is rapidly
increasing. The main ingredient was a sequence of backward TDSP probes that allowed sampling
the (faster-growing) delay axis of the unknown function Do, d]. Unfortunately, in the case of a
single origin and multiple destinations it is not possible to do the same, since we are now sampling
various axes of shortest-travel-time values (one per destination). But sampling on the values of
different functions would be equivalent to computing point-to-point approximations separately,
which would be unnecessarily expensive. Our goal is to manage to create all the required sample
points of shortest-travel-time values concurrently, with time-complexity equivalent to the worst
time-complexity of a point-to-point approximation of a shortest-travel-time function from o to one
of the possible destination nodes.

What we do is the following: We create again a sequence of sample points for different departure-
times from the origin in such a way that, for each sampled departure-time, at least one destination
node would need it in order to assure the desired approximation guarantee. On the other hand,
for each possible destination node we store only those sample points that are indeed necessary
for their approximation guarantee, and only so long as this node still has an instantaneous (i.e.,

23

around the sampling departure-time) shortest-travel-time function slope greater than 1. Since
we are guaranteed that these slopes may only decrease with time, we deactivate each destination
node v whose shortest-travel-time function D|o,v] reaches a right-slope A*[o, v] of at most 1, and
finish this approximation phase when all the destination nodes have become deactivated. The
next phase (bisection) of the approximation algorithm would have to start at the departure-time
of the first node deactivation during this first phase.

In particular, starting from a departure-time ty > 0, we run a forward TDSP probe to determine
the earliest-arrival values (and the instantaneous functional descriptions of these functions) at
destination nodes:

- + +
(tg)’v = t() + D[O, v](to))vev - (té)yv = AO,U ’ to + BO,U)vEV

FEach destination node that has A;“’U < 2 is removed from the set M of active nodes, in order
to become deactivated. Consequently, we delay the entire shortest-travel-times (vector) function
DJo, *] by (1 + €), only for the active nodes:

- .D —(t = + Y. .BF
(o =tot (142) - Dloolto)) = (the =to+ (L+)(Af, =D to+ (1+2)- B, ,,

Rather than computing (via backward TDSP probes) the actual latest-departure times ¢1, from
the origin to meet all the arrival-times ¢} , at active destinations, we estimate lower bounds t, , <
t1,» by reversing the delay functions and computing the corresponding latest departure times from
o0, as if no further breakpoint would occur. Clearly, these estimated departure times can only be
earliear than the actual latest departure times, due to the concavity of all the shortest-travel-
time functions in the subinterval [ts,¢s]. The minimum (over all active nodes) of all these lower
bounds is a new sampling departure-time, for which we can be sure that will not violate any of
the approximation guarantees for all the shortest-travel-time functions. In particular, we consider
the next sampling departure-time:

. . (Aajv_l)to—"_B[J)r,'u
(28) th = }}rellAr;{tl,u}:toJra-g}reuAr}{ > to

Ag,
and we create a new set of sampled shortest-travel-time points at time ¢; by running a single
forward TDSP probe. From all these sample points, only those that are indeed necessary for the

required approximation guarantee and involve still active destination nodes are stored. The rest
are simply skipped. An overview of the algorithm is given in figure 10.

ty—EwaraDisE—»> £o + D[o, *](%o)

}

11 ~4—DEyREeRE—— /', = MAX{ Uil ot (lJrg;) D[()v*](fo) }

!

t——FomErDiksE—> 11 + D[o, *](¢1) Keep (1Dlo.d](1.) only if d is active and MAE[o,d](to.ts) <& D{o.d](to)

}

17 ,,~4—Delay Reversal—— f’z\/ = MAX{ tair, 1t (l+(,‘) D[(), *](fl) }

!

t,——FemaabiiksE—»> 1, + D[o, *](¢2) Keep (1 Dlo.d](r,) only if s active and MAE[o,d)(rytz) < Dlo.d](r)

o
o
o

FIGURE 10. Overview of the first phase of our refined approximation technique for SOTDDA.

Correctness of Phase 1. We exploit the fact that all the arc-delay functions are assumed to be

linear in the subdomain of interest [ts,¢] C [0,7], and thus the unknown shortest-travel-times

vector function DJo,*] is a continuous, pwl concave chain in every coordinate. Recall that, at

any sample point (¢,,DJo,*](¢,)], we know not only the particular delay values, but also the

instantaneous functional descriptions of all the functions D[o, v] in a small ball around ¢, (assuming
24

no two minimization breakpoints at nodes never happen to occur exactly at the same departure
time). From a given sample point tg, we choose the next sample point (cf. equation 28) in such
a way that the gap between each upper-approximating and each lower-approximating function
does not violate the required approximation guarantee (as was the case also in our phase-1 for
the point-to-point approximation). The main difference is that, rather than executing individual
backward TDSP probes (from any possible destination of interest) in order to discover the latest
next departure time that would not violate any of these guarantees, we compute directly the
corresponding departure times for the reverse shortest-travel-time upper-approximating functions,
and choose the earliest of them as the next sample point. If we had executed the backward
TDSP probes instead, we might have even later sample points, but our sampling sequence is
only a pessimistic one (with more sample points than the one with backward TDSP executions).
Consequently, we run again a forward TDSP probe to get the functional description and delay
values of Do,] (t1).

Therefore, the correctness of our approach is a simple consequence of the correctness for the
point-to-point approximation presented in subsection 5.1.4.
Time/Space Complexity of Phase 1. The space-complexity of our algorithm is assured by the fact
that each destination nodes only keeps as breakpoints those sample points that are actually neces-
sary for its own approximation guarantee. It is straightforward to see that any other approximation
algorithm would require at least one breakpoint per two (stored) breakpoints of our approach.

Therefore, we focus our interest on the time-complexity of our approach. Our main argument
is that in each sample point and each active destination v, either a significant progress is done on
the delay value (until we reach Dpax|0, v]) or the earliest-arrival slope is significantly reduced. In
particular, the following property holds:

Proposition 5.3. Let ty < t; two sampling departure-times of SO_.PWL1.1, and let v be the
departure-vertex that remains active up to time t1 and is responsible for the value of t1 (cf. equa-
tion 28). Assume knowledge of the instantaneous functional descriptions of the earliest-arrival
function Arrlo,v] given by Aoix + Bf)t at time ty and Alix + BljE at time t1. Then the following
hold:

Do, v](t1)

Y

<1 + 1255> - D[o,] (to)
Af < (47 -1)-(1-9)-1

where Dy = (1 —6)Dy + 6Dy for some 6 € (0,1], D1 = Dlo,v|(t;) = (Af — 1)t; + By is the actual
delay for departure time t1, Do = D[o,v](to) = (AJ — 1)to + By is the actual delay for departure
time to, and Dy = (A§ — 1)t; + By is the hypothetical delay for departure time t1, if no further
breakpoint would occur in (to,t1].

N

Before providing the proof of this proposition, we should mention that it assures that in each
sampling point, for at least one active destination vertex (the one determining the value of ¢,)
either the actual delay is significantly increased by a constant factor, or the instantaneous earliest-
arrival slope decreases by (roughly) a constant factor.

Proof. Our first observation has to do with the difference of the two sampling departure times:
t1+ Dy = to + (1+¢)[(Ag — D)to + By]

= ti—to=(1+e)[(A7 — Dto+ BJ]— Dy
= ti—to=(1+¢)[(A — Vto+ By] — (Ag — Dt1 — By
= AS_ : (tl — to) = E[(Aa_ — 1)t0 + B(—H =eDy
A,

1—to=—F

Ag
Recall now that, by the determination of ¢; = ¢, ,, the following holds:
Dy, = (Af —Dti+Bf =D§ + (Af — 1) (t1 — to)

= (1+¢)Do — (t1 — to)

E
1 —— | D
(” AJ) 0

25

We shall now quantify the actual increase (as a function of §) in the actual delay value, when
considering tg and ¢y:

D; (S)ﬁl + (SDO

(1-
[(1—5)- <1+s—A}>+5] - Dy
e () o

/e AL 22 %/ 1-6
> (1+ 7 'E>'D0

We conclude our proof by quantifying the actual decrease of the earliest-arrival slope for Arr{o,v]:
t1+ Dy — (to + Do)

Al <
t1 —to
_ Dl—Do_1
t1 —to
1_5.(_L).D
I G "1
eDqg
Ay

(A —1)-(1-0) -1

26

REFERENCES

[1] K. Cooke and E. Halsey. The shortest route through a network with time-dependent intermodal transit times.
Journal of Mathematical Analysis and Applications, 14(3):493-498, 1966.

[2] Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395-412, 1969.

[3] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of time-dependent shortest paths. In
Proc. of 22nd ACM-SIAM Symp. on Discr. Alg. (SODA ’11), pages 327-341. ACM-SIAM, 2011.

[4] H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise linear function. Journal of Infor-
mation Processing, 9(3):159-162, 1987.

[5] Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algorithms in Networks with Time-Dependent
Edge-Length. Journal of the ACM, 37(3):607-625, 1990.

S. KONTOGIANNIS: COMPUTER SCIENCE & ENGINEERING DEPARTMENT, DOUROUTI UNIVERSITY CAMPUS, 45110
ToanNiNA, GREECE.

C. ZAROLIAGIS: COMPUTER ENGINEERING & INFORMATICS DEPT., UNIVERSITY OF PATRAS, 26500 R1oN, GREECE.

E-mail address: kontog@cs.uoi.gr and zaro@ceid.upatras.gr

27

