
Project Number 288094

eCOMPASS
eCO-friendly urban Multi-modal route PlAnning Services for mobile uSers

STREP
Funded by EC, INFSO-G4(ICT for Transport) under FP7

eCOMPASS – TR – 025

Distance Oracles for Time-Dependent
Networks

Spyros Kontogiannis and Christos Zaroliagis

July 2013

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS

SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

Abstract. We present the first approximate distance oracles for sparse directed networks
with time-dependent arc-travel-times determined by continuous, piecewise linear, positive
functions possessing the FIFO property. Our approach precomputes, in subquadratic time
and space, (1+ε)−approximate distance summaries from selected vertices to all other vertices
in the network, and provides two sublinear time query algorithms that deliver constant
and (1 + σ)−approximate shortest-travel-times, respectively, for arbitrary origin-destination
pairs in the network. More specifically, our contributions are threefold: (i) we present a
one-to-all polynomial-time algorithm for computing (1 + ε)−approximations of the shortest-
travel-travel time functions from a specific origin to all other vertices in the network, using
space per approximate travel-time function that is asymptotically optimal and independent
of the network size; (ii) we give a constant-approximation query algorithm of sublinear time
complexity for arbitrary origin-destination pairs based on distance summaries precomputed
from a subset of vertices (landmarks) to all other vertices using the one-to-all algorithm; (iii)
we give a query algorithm that recursively uses the precomputed distance summaries and
the constant-approximation algorithm, in order to achieve a (1 + σ)-stretch factor, for any
σ > ε.

Date: July 8, 2013.
1991 Mathematics Subject Classification. 05C85: Graph algorithms; 05C12: Distance in graphs; 68W25:

Approximation algorithms; 68Q25: Analysis of algorithms and problem complexity.
Key words and phrases. Time-dependent shortest paths, FIFO property, distance oracles.
? Partiallly supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities & Sustainability), under

grant agreement no. 288094 (project eCOMPASS).

S. Kontogiannis: University of Ioannina and Computer Technology Institute & Press “Diophantus”, kontog@cs.uoi.gr.

C. Zaroliagis: University of Patras and Computer Technology Institute & Press “Diophantus”, zaro@ceid.upatras.gr.

1

2 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

1. Introduction

Distance oracles are succinct data structures encoding shortest path information among a
carefully selected subset of pairs of vertices in a graph. The encoding is done in such a way that
the oracle can efficiently answer shortest path queries for arbitrary origin-destination pairs,
by querying the preprocessed data and/or applying local shortest path searches. A distance
oracle is exact (resp. approximate) if the shortest paths discovered by the accompanying
query algorithm are exact (resp. approximate). A bulk of important work (e.g., [18, 17, 14,
15, 19, 20, 1]) is devoted to constructing exact or approximate distance oracles in the case
of static or time-independent (mostly) undirected general networks where the arc costs are
fixed, providing trade-offs between oracle space and query time and, in the case of approximate
oracles, also of the stretch (the max ratio, over all origin-destination pairs, between the path-
length returned by the oracle and the true distance). For an overview of distance oracles for
static networks, the reader is deferred to the survey article [16] and the references therein.

In many real-world applications, however, the arc costs may vary as functions of time (e.g.,
when representing travel-times) giving rise to time-dependent network models. A striking
example is route planning in road networks where the travel-time for traversing an arc a = uv
(modeling a road segment) depends on the real-time traffic conditions and thus on the depar-
ture time from its tail u. Consequently, the optimal origin-destination path may vary with
the departure-time from the origin. Apart from the theoretical challenge, the time-dependent
model is also much more realistic concerning the actual traffic data that the route planning
vendors have to digest, in order to provide their customers with fast route plans. For ex-
ample, TomTom’s LiveTraffic service1 provides real-time estimations collected by periodically
sampling the status (availability, average speed, etc) of each road segment in a city, using
the connected cars to the service as sampling devices. The crucial challenge is how to ex-
ploit all this temporal information in order to provide fast route plans that will vary with
the departure-time from the origin. A way towards this direction is to construct continuous
piecewise linear (pwl) functions (the interpolants of the averaged sampled points) that may
then be considered as travel-time functions of the arcs.

Computing time-dependent shortest paths for a given triple (o, d, to) of an origin o, a
destination d and a departure-time to from the origin, has been studied long ago (see e.g.,
[3, 9, 13]). It turns out that the shape of arc-travel-time functions and the waiting policy
at vertices can considerably affect the solvability of the problem [13]. A crucial property is
the FIFO property, according to which each arc in the network behaves as a FIFO queue,
in the sense that the arrival-time at the head is a non-decreasing function of the departure-
time from the tail. If a forbidden-waiting-at-vertices policy is adopted and the arc-travel-time
functions do not possess the FIFO property, then the problem becomes NP−hard [13]. On
the other hand, if arc-travel-time functions possess the FIFO property, then (regardless of
the waiting policy at vertices) the problem can be solved in polynomial time by a variation of
Dijkstra’s algorithm (time-dependent Dijkstra – TDD), which scans arcs and settles vertices
by computing the arc costs “on the fly” (i.e., the travel-time of arc a = uv is computed when
vertex u is settled). This has been first observed in [9], where the unrestricted waiting policy
was (implicitly) assumed for vertices along with the non-FIFO property for arcs, which is
equivalent to the FIFO case with forbidden-waiting-at-vertices since one can always wait at
the tail of an arc to optimize the arrival-time at its head. The FIFO property may seem
unreasonable in some application scenarios, e.g., for a traveler waiting at the dock of a train
station and wondering whether to take the very next (slow) train towards destination, or wait
for a later (faster) train that will take him much earlier to his destination.

Our motivation in this work stems from route planning in urban-traffic metropolitan road
networks. In this case the FIFO property seems much more natural, since all cars are assumed

1http://www.tomtom.com/livetraffic/

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 3

to travel according to the same (average) speed along each road segment, and overtaking is
not considered as an option when choosing a route plan. Indeed, the raw traffic data for arc-
travel-time functions by TomTom for the city of Berlin are compliant with this assumption
[10]. In any case, it is well known (see e.g., [11, 13]) that, when shortest-travel-times are well
defined, a non-FIFO arc with unrestricted-waiting-at-tail policy is equivalent to a FIFO arc
in which waiting at the tail is useless. Therefore, our focus in this work is on networks with
FIFO arc-travel-time functions.

Until recently, most of the previous works on the time-dependent shortest path problem
concentrated on computing an optimal origin-destination path providing the earliest-arrival
time at destination when departing at a particular time from the origin, and neglected the
computational complexity of providing succinct representations of the entire earliest-arrival-
time (or equivalently, the shortest-travel-time) functions, for any departure-time from the
origin. Such a representation, apart from allowing rapid answers to several queries for se-
lected origin-destination pairs but for varying departure times, would also be valuable for the
construction of distance summaries (a.k.a. route planning maps) from some central vertices
(called landmarks or hubs) towards any other vertex in the network. This would in turn be
a crucial ingredient for the construction of distance oracles to support real-time responses to
arbitrary origin-destination-departure time queries in time-dependent networks.

The complexity issue of succinctly representing earliest-arrival-time functions was first
raised by Dean [4, 6, 5], but was solved only recently by a seminal work [11] which, for
FIFO-abiding pwl arc-travel-time functions, showed that the problem of succinctly represent-
ing such a function for a single origin-destination pair has space-complexity (K+1) ·nΘ(logn),
where n is the number of vertices and K is the total number of breakpoints (legs) of all the
arc-travel-time functions. Among other results, a (1 + ε)-approximation polynomial-time
algorithm (PTAS) is provided in [11] that computes an approximate arrival-time function
providing point-to-point travel-time values at most 1 + ε times the true values. The impor-
tance of this result is that this function has a succinct representation requiring only O(K + 1)
breakpoints per origin-destination pair. Also, it is easy to verify that in this case K could
be substituted by the number K∗ of concavity-spoiling breakpoints of the arc-travel-time
functions (i.e., breakpoints at which the arc-travel-time slopes increase).

To the best of our knowledge, the problem of providing distance oracles for time-dependent
networks has not been investigated so far. Due to the hardness of providing succinct rep-
resentations of exact shortest-travel-time functions between selected origin-destination pairs
of vertices [11], the only realistic alternative is to use approximations of these functions
for the distance summaries that will be preprocessed and stored by the oracle. Having a
PTAS (as that in [11, Section 5.3]) for computing point-to-point distances, one could pro-
vide a trivial oracle with query-time complexity Q ∈ O(1), at the cost of an exceedingly high
space-complexity S ∈ O((K∗ + 1)n2

)
, by storing the succinct representations of all the point-

to-point (1+ε)−approximate shortest-travel-time functions. At the other extreme, one might
only use the minimum possible space complexity S ∈ O(n+m+K) at the cost of suffering a
query-time complexity Q ∈ O(m+ n log(n)[1 + log log(1 +Kmax)]) (e.g., only store the graph
itself and the arc-travel-time functions, and respond to each query by running TDD in real-
time). Here, Kmax denotes the maximum number of breakpoints in any of the arc-travel-time
functions2. The main challenge is, as in the time-independent case, to smoothly close this
gap, i.e., to achieve a better (e.g., sublinear) query-time complexity, while consuming sub-
quadratic space-complexity and enjoying a small (e.g., less than 2) approximation guarantee
(stretch factor).

2The extra log log(Kmax) term in the Dijkstra-time is due to the fact that the arc-travel-times are continuous
pwl functions of the departure-time from their tails, represented as collections of breakpoints. A predecessor-
search structure would allow the evaluation of such a function to be achieved in time O(log log(Kmax)).

4 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

Our goal in this work is to provide efficient distance oracles for time-dependent networks
along with a solid theoretical analysis for the claimed complexity bounds. In particular, we
present the first approximate distance oracle for sparse directed networks with time-dependent
arc-travel-times, which achieves subquadratic time and space preprocessing complexity, sub-
linear query time, and a stretch factor close to 1. Note that: (i) even in static undirected
networks, achieving a stretch factor below 2 using subquadratic space and sublinear query
time, is only possible when m ∈ o

(
n2
)
, and has been achieved, at least to our knowledge, only

by two very recent works [15, 1]; (ii) there is important applied work [8, 2, 7, 12] to develop
time-dependent shortest path heuristics, which however provide only empirical evidence of
the used approaches.

At a high level, our approach resembles the typical ones used in time-independent and
undirected graphs (e.g., [18, 15, 1]), where all distance summaries from selected vertices
(landmarks) are precomputed and stored so as to support fast responses to arbitrary real-
time queries by growing small distance balls around the origin and the destination vertices
and then closing the gap between the prefix subpath (from the origin) and the suffix subpath
(towards the destination). However, it is not at all straightforward how this generic approach
can be extended to time-dependent directed graphs, since one is confronted with two highly
non-trivial challenges: (i) handling directedness, and (ii) managing time-dependency, i.e.,
deciding the specific times to grow balls at the destination because we simply do not know
the earliest-arrival-time at destination – actually, this is what the original query to the oracle
asks for, since the earliest-arrival-time at destination minus the departure-time from the origin
is exactly the requested shortest-travel-time.

More specifically, our contributions are threefold: (i) we present a concurrent (i.e., one-to-
all) polynomial-time algorithm for computing (1 + ε)−approximations of the shortest-travel-
travel time functions from a specific origin to all possible destinations in the network, using
space per approximate travel-time function that is asymptotically optimal and independent of
the network size; (ii) we give a constant-approximation, sublinear-time query algorithm for
arbitrary origin-destination pairs based on distance summaries precomputed from a prede-
termined set of landmarks to all other vertices using the one-to-all algorithm; (iii) we give a
query algorithm that recursively uses the precomputed distance summaries and the constant-
approximation algorithm, in order to achieve a (1 + σ)-stretch factor, ∀σ > ε. Due to lack of
space, several proofs are given in the appendix, as well as complexity trade-offs (Section F).

2. Ingredients and Oveview of Our Approach

Our input is provided by a directed graph G = (V,A) with |V | = n vertices and |A| = m
arcs, in which every arc a = uv ∈ A is equipped with a periodic, continuous, piecewise-
linear (pwl) arc-travel-time (or arc-delay) function D[a] : R → R>0, such that ∀k ∈ Z,∀tu ∈
[0, T], D[a](k · T + tu) = D[a](tu) is the arc-travel-time for traversing a = uv when the
departure-time from u is k · T + tu. Moreover, D[a] is represented succinctly by a (constant)
number Ka of breakpoints, or equivalently, as a collection of Ka + 1 affine legs that comprise
this pwl function. Let K =

∑
a∈AKa be the total number of breakpoints to represent all the

arc-delay functions in the network, and let Kmax = maxa∈AKa. Also, let K∗ be the number
of concavity-spoiling breakpoints, i.e., those breakpoints in which the arc-delay slopes increase.
Clearly, K∗ < K, and K∗ = 0 for concave pwl functions. The space to represent the entire
network is O(n+m+K). The arc-arrival function Arr[a](tu) = tu + D[a](tu) represents
arrival-times at the head v of a = uv, depending on the departure-times tu from its tail u.

Between any pair (o, d) ∈ V ×V in G, Po,d is the set of od−paths in G, and P = ∪(o,d)Po,d.
For a path p ∈ P, we denote by px y its subpath that starts from (the first appearance
of) vertex x and ends at (the subsequent first appearance of) vertex y. For any pair of
paths p ∈ Po,v and q ∈ Pv,d, p • q is the od−path produced as the concatenation of p

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 5

and q at v. For any path (represented as a sequence of arcs) p = 〈a1, a2, · · · , ak〉 ∈ Po,d,
the path-arrival function is the composition of the constituent arc-arrival functions: ∀to ∈
[0, T], Arr[p](to) = Arr[ak](Arr[ak−1](· · · (Arr[a1](to)) · · ·)). The path-travel-time function
is D[p](to) = Arr[p](to) − to. The earliest-arrival-time function from o to d is defined as
follows: ∀to ∈ [0, T], Arr[o, d](to) = minp∈Po,d {Arr[p](to)}. The shortest-travel-time function
is D[o, d](to) = Arr[o, d](to) − to. Finally, SP [o, d](to) (resp. ASP [o, d](to)) is the set of all
shortest (resp., with stretch-factor at most (1 + ε)) od−paths for a given departure-time to.

2.1. Some facts on the FIFO property. We consider networks G = (V,A, (D[a])a∈A)
with continuous arc-delay functions, possessing the FIFO (or non-overtaking) property, which
states that all arc-arrival-time functions in the network are non-decreasing:

(1) ∀tu, t′u ∈ R, ∀uv ∈ A, tu > t′u ⇒ Arr[uv](tu) ≥ Arr[uv](t′u)

The FIFO property is strict, if the above inequality is strict. The following properties (Lem-
mata 2.1–2.3), are (perhaps) more-or-less known. We state them here (and provide their
proofs in the Appendix) only for the sake of completeness.

Lemma 2.1. If the network satisfies the (strict) FIFO property then any arc-delay function
must have left and right derivatives with values at least (greater than) −1.

It is easy to verify that the (assumed for arc-arrival-time functions) FIFO property also
holds for arbitrary path-arrival-time functions and earliest-arrival-time functions.

Lemma 2.2. If the network satisfies the FIFO property, then ∀p = 〈a1, . . . , ak〉 ∈ Po,d it
holds that: ∀t1 ∈ R,∀δ > 0, Arr[p](t1) ≤ Arr[p](t1 + δ) . In case of strict FIFO property, the
inequality is also strict. The (strict) monontonicity holds also for Arr[o, d].

The strict FIFO property implies also the crucial property of subpath optimality.

Lemma 2.3. If the network possesses the strict FIFO property, then ∀(u, v) ∈ V × V , ∀tu ∈
R and any optimal path p∗ ∈ arg minp∈Pu,v {Arr[p](tu)} = SP [u, v](tu) , it holds for every
subpath q∗ ∈ Px,y of p∗ that q∗ ∈ SP [x, y](Arr[p∗u x](tu)), i.e., q∗ is a shortest path between
its endpoints x, y for the earliest-departure-time from x, given tu.

Lemma 2.3 implies that both Dijkstra’s label setting algorithm and the label-correcting al-
gorithm also work in time-dependent strict FIFO networks, under the usual conventions for
static instances (positivity of arc-delays and inexistence of negative-travel-time cycles).

2.2. Towards a time-dependent distance oracle. Our main assumption is that we are
provided with a polynomial-time algorithm that provides, for an arbitrary pair (o, d) ∈ V ×V
of origin-destination vertices, a succinctly represented upper-bounding approximate distance
function, ∆[o, d], i.e., a continuous pwl function with a constant number of breakpoints, such
that ∀to ∈ R, D[o, d](to) ≤ ∆[o, d](to) ≤ (1+ε)·D[o, d](to) . Such a polynomial-time algorithm
for point-to-point (1+ε)−approximate distance functions is, e.g., provided in [11, Section 5.3].

We demonstrate in this work an alternative approach to construct one-to-all approximate
distance functions in the same time-complexity as for a single point-to-point construction, and
with an asymptotically optimal space complexity. This will be crucially based on an exact
expression of the maximum (worst-case) additive error when we “sandwitch” an unknown
concave function between two properly chosen continuous pwl functions.

We make two assumptions on the kind of shortest-travel-time functions in the network, one
that measures the steepness of the time-dependence, and one that quantifies the asymmetry
of the distances in the network due to directedness. These assumptions seem quite natural
in realistic time-dependent route planning instances, such as urban-traffic metropolitan road
networks. The first assumption, called Bounded Travel-Time Slopes, asserts that the partial
derivatives of the shortest-travel-time functions between any pair of origin-destination vertices
are bounded in a given fixed interval [Λmin,Λmax] for constants Λmax ≥ 0 and Λmin > −1.

6 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

Assumption 2.1 (Bounded Travel-Time Slopes). There are constants Λmin ≤ 0 and Λmax ≥
0 s.t.: ∀(o, d) ∈ V × V, ∀t1 < t2, −1 < Λmin ≤ D[o,d](t1)−D[o,d](t2)

t1−t2 ≤ Λmax .

The lower bound −1 is justified by Lemmata 2.1 and 2.2 (strict FIFO property), while
Λmax represents the maximum possible rate of shortest-travel-time change in a road network,
which only makes sense to be bounded. The second assumption, called Bounded Opposite
Trips, asserts that, for any given departure time, the shortest-travel-time from o to d is not
more than a constant ζ ≥ 1 times the shortest-travel-time in the opposite direction (but not
necessarily along the same path). This is quite natural in road networks, a fact that is indeed
verified by real data, e.g., the traffic data provided by TomTom for the city of Berlin [10]
convey that the maximum value of ζ is always less than 1.5.

Assumption 2.2 (Bounded Opposite Trips). There is a constant ζ ≥ 1 such that: ∀(o, d) ∈
V × V, ∀t ∈ [0, T], D[o, d](t) ≤ ζ ·D[d, o](t) .

Another assumption that we make, which nevertheless can be guaranteed w.l.o.g. by a
simple, standard transformation that at most doubles the size of the network, is that the
maximum out-degree is bounded by 2 (cf. Appendix, Section B for details).

2.3. Overview of our approach. We follow (at a high level) the typical approach adopted
for the construction of approximate distance oracles in the static case. In particular, we
start by selecting a subset L ⊂ V of landmarks, i.e., vertices which will act as reference
points for our distance summaries. For our oracle to work, several ways to choose L would
be acceptable. Nevertheless, for the sake of the analysis we assume that this is done by
deciding for each vertex randomly and independently with probability ρ ∈ (0, 1) whether it
belongs to L. After having L fixed, our approach is deterministic. We start by construct-
ing (concurrently, per landmark) and storing the distance summaries, i.e., all landmark-
to-vertex (1 + ε)−approximate travel-time functions, in subquadratic time and consuming
subquadratic space which is indeed asymptotically optimal w.r.t. the required approxima-
tion guarantee (cf. Section 3). Then, we provide two approximation algorithms for arbitrary
origin-destination-departure time queries (o, d, to). The first (FCA) is a simple sublinear -
time constant-approximation algorithm (cf. Section 4). The second (RQA) is a recursive
algorithm growing small TDD outgoing balls from vertices in the vicinity of the origin, until
either a satisfactory approximation guarantee is achieved, or an upper bound r on the num-
ber of recursions (the recursion budget) has been exhausted. This algorithm responds with
a (1 + σ)−approximate travel-time to the query in sublinear time, for any constant σ > ε
(cf. Section 5). As it is customary in the distance oracle literature, the query times of our
algorithms concern the determination of (upper bounds on) the shortest-travel-time from o to
d. An actual path guaranteeing this bound can be reported in additional time that is linear
in the number of its arcs.

3. Preprocessing Distance Summaries

The purpose of this section is to demonstrate how one can construct the necessary prepro-
cessed information that will comprise the distance summaries of the oracle, i.e., all landmark-
to-vertex shortest-travel-time functions. Our focus is on instances with concave, continuous,
pwl arc-delay functions possessing the strict FIFO property. If there exist K∗ ≥ 1 concavity-
spoiling breakpoints among the arc-delay functions, then we do the following: For each of
them (which is a departure-time tu from the tail u of an arc a = uv ∈ A) we run a variant
of TDD with root (u, tu) on the reverse network (

←−
G = (V,A, (

←−
D [a])a∈A), where

←−
D [xy] de-

scribes the delay of arc a = xy, measured now as a function of the arrival-time ty at the tail
y. The algorithm proceeds backwards both along the connecting path(s) (from the destina-
tion towards the origin) and in time. As a result, we compute all latest-departure-times from

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 7

landmarks to catch the corresponding concavity-spoiling breakpoints, i.e., their projections
to appropriate departure-times from the landmarks. Then, for each given orign-landmark
we repeat the procedure described in the rest of this section independently for each of the
(at most) K∗ + 1 consecutive subintervals of [0, T] determined by these images. Within each
subinterval all arc-travel-time functions are concave, as required in our analysis.

We must construct in polynomial time, for all (`, v) ∈ L× V succinctly represented upper-
bounding (1 + ε)−approximations ∆[`, v] : [0, T]→ R>0 of the shortest-travel-time functions
D[`, v] : [0, T]→ R>0. An algorithm providing such functions in a point-to-point fashion was
proposed in [11, Section 5.3]. For each landmark vertex ` ∈ L, it has to be executed n times so
as to construct all the required landmark-to-vertex approximate functions. Additionally, the
number of breakpoints returned by that algorithm may not be asymptotically optimal, given
the required approximation guarantee: even for an affine (or almost affine) shortest-travel-
time function with fixed slope(s) in (1, 2] it would require a number of points logarithmic in
the ratio of max-to-min travel-time values from ` to v, despite the fact that we could avoid
all intermediate breakpoints for the upper-approximating travel-time function.

Our solution is an improvement of the approach in [11] in two aspects: (i) it computes
concurrently all the required approximate distance functions from a given landmark at a cost
of a single point-to-point approximation of [11], and (ii) within every subinterval of consecutive
images of concavity-spoiling breakpoints, our construction provides asymptotically optimal
space per landmark, which is also independent of the network size per landmark-vertex pair,
implying that the required preprocessing space per vertex is O(|L|).

In a nutshell, we construct two continuous pwl-approximations of the unknown shortest-
travel-time function D[`, v] : [0, T] → R>0, an upper-bounding approximate function D[`, v]
and a lower-bounding approximate function D[`, v]. D[`, v] plays the role of ∆[`, v]. Our
construction guarantees that the exact function is always “sandwitched” between these two
approximations. In particular, for a given landmark ` ∈ L, the algorithm proceeds as follows:
for any subinterval [ts, tf] ⊆ [0, T] we distinguish the destination vertices into active, i.e., the
ones for which the desired value ε · Dmin[`, v](ts, tf) of the maximum absolute error within
[ts, tf] (whose closed form is provided in Lemma C.1) has not been reached yet, and the
remaining inactive vertices3. Starting from [ts, tf] = [0, T], as long as there is at least one
active destination vertex for [ts, tf], we bisect this time interval and recur on the subintervals
[ts, (ts + tf)/2] and [(ts + tf)/2, tf]. Prior to recurring to the two new subintervals, every
destination vertex v ∈ V that is active for [ts, tf] stores the bisection point (ts+tf)/2 (and the
corresponding sampled travel-time) in a list LBP [`, v] of breakpoints for D[`, v]. All inactive
vertices just ignore this bisection point. The bisection procedure is terminated as soon as all
vertices have become inactive. A linear scan of LBP [`, v] allows also the construction of the
list UBP [`, v] of breakpoints for D[`, v]. Lemma C.1 explains which is the extra breakpoint
for UBP [`, v], for each pair of consecutive breakpoints in LBP [`, v]. We denote by L[`, v]
(U [`, v], resp.) the number of breakpoints we used for D[`, v] (D[`, v], resp.). By construction
it holds that U [`, v] ≤ 2 · L[`, v] (see more details in Section C).

The following theorem summarizes the space-complexity and time-complexity of our bi-
section method for providing concurrently one-to-all shortest-travel-time approximate travel-
time functions in time-dependent instances with concave4, continuous, pwl arc-travel-time
functions, with bounded shortest-travel-time slopes. Let U∗[`, v] denote the minimum possi-
ble number of breakpoints for any (1 + ε)−approximating function of D[`, v].

3Dmin[`, v](ts, tf) = mint∈[ts,tf]{D[`, v](t)} = min{D[`, v](ts), D[`, v](tf)}, due to concavity of D[`, v] in

[ts, tf]. Similarly, Dmax[`, v](ts, tf) = maxt∈[ts,tf]{D[`, v](t)}.
4If concavity is not assured, then these numbers must be multiplied by K∗ + 1, since the proposed approx-

imation procedure has to be repeated per subinterval of consecutive images of concavity-spoiling breakpoints.

8 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

Theorem 3.1. For a given ` ∈ L and any v ∈ V , our preprocessing algorithm computes an
asymptotically optimal and independent of the network size number of breakpoints

U [`, v] ≤ 4U∗[`, v] ≤ 4 log1+ε

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)
∈ O

(
1
ε log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

))
where Dmax[`, v](0, T) and Dmin[`, v](0, T) are the maximum and minimum shortest-travel-
time values within [0, T]. Moreover, the total number TDP of time-dependent (forward)
shortest-path-tree probes for the construction of all the lists of breakpoints for (D[`, v])v∈V , is:

TDP ∈ O
(

maxv∈V
{

log
(

T ·(Λmax+1)
εDmin[`,v](0,T)

)}
· 1
ε ·maxv∈V

{
log
(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})
.

Let U = max`,v U [`, v]. Since the expected number of landmarks is E {|L|} = ρn, it is easy
to deduce the required time and space complexity of our entire preprocessing.

Corollary 3.1. The expected complexities for space S and time P of the preprocessing phase
are: E {S} ∈ O(ρn2(K∗ + 1)U

)
and E {P} ∈ O(ρn2 log(n) · log log(Kmax) · (K∗ + 1)TDP

)
.

U and TDP are independent of n (Theorem 3.1), so we consider them as constants. If all
arc-travel-time functions are concave, i.e., K∗ = 0, then we achieve subquadratic preprocess-
ing space and time ∀ρ ∈ O(n−α), where 0 < α < 1. Real data (e.g., TomTom’s traffic data for
the city of Berlin [10]) demonstrate that: (i) only a small fraction of the arc-travel-time func-
tions exhibit non-constant behavior; (ii) for the vast majority of these non-constant-delay
arcs, their functions are either concave, or can be very tightly approximated by a typical
concave bell-shaped pwl function. It is only a tiny subset of critical arcs (e.g., bottleneck
road segments) for which it would be meaningful to consider non-concave behavior. There-
fore, K∗ ∈ o(n) is the typical case, and indeed, assuming e.g., K∗ ∈ O(polylog(n)), we can
easily fine-tune ρ and the parameters σ, r (cf. Section 5) so as to achieve subquadratic pre-
processing space and time. In particular, for K∗ ∈ O(log(n)) and Kmax ∈ O(1), ∀γ > 1

2 ,
E {S} ∈ O(n2−ε/(γψ) log(n)

)
and E {P} ∈ O(n2−ε/(γψ) log2(n)

)
, where ψ = ψ(ζ,Λmax) is a

constant that will be specified in Lemma 4.1. More details are provided in Section F.

4. Constant-Approximation Query Algorithm

Based on the preprocessed distance summaries, the next step towards a distance oracle is
to provide a fast query algorithm providing constant-approximations to the actual shortest-
travel-time values of arbitrary queries (o, d, to) ∈ V × V × [0, T]. In this section, we propose
such a query algorithm, called Forward Constant Approximation (FCA), which grows an
outgoing ball Bo ≡ B[o](to) = {x ∈ V : D[o, x](to) < D[o, `o](to)} around (o, to) by running
TDD, until either d or the closest landmark `o ∈ arg min`∈L{D[o, `](to)} is reached. We call
Ro = D[o, `o](to) the radius of Bo. Then, the algorithm either returns the exact travel-time
value, or it returns the approximate travel-time value via `o. The pseudocode is in Figure 5,
while Figure 1 gives an overview of the whole idea.

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro) Figure 1. The rationale of FCA. The dashed
(blue) path is a shortest od−path for query
(o, d, to). The dashed-dotted (green and red)
path is the via-landmark od−path indicated by
the algorithm, if the destination vertex is out of
the origin’s TDD ball.

4.1. Correctness. First we demonstrate that FCA indeed returns od−paths whose travel-
times are constant approximations to the shortest travel-times.

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 9

Lemma 4.1. For any time-dependent network (V,A, (D[a])a∈A) and any query (o, d, to) ∈
V × V × [0, T], FCA returns either a path P ∈ SP [o, d](to) with the shortest travel-time
D[o, d](to), or it returns a via-landmark od−path Q • Π such that Q ∈ SP [o, `o](to) and
Π ∈ ASP [`o, d](to+Ro) (the approximate path provided by the oracle), for which the following
holds: D[o, d](to) ≤ Ro+∆[`o, d](to+Ro) ≤ (1+ε)·D[o, d](to)+ψ ·Ro ≤ (1+ε+ψ)·D[o, d](to) ,
where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ.

Observe that FCA is a generalization of the 3−approximation algorithm in [1] for sym-
metric (i.e., ζ = 1) and time-independent (i.e., Λmin = Λmax = 0) network instances, the only
difference being that the stored distance summaries we consider are (1 + ε)−approximations
of the actual shortest-travel-times. Of course, our algorithm smoothly departs (through the
parameters ζ and Λmax) towards both asymmetry (directedness) and time-dependence.

4.2. Complexity. The main cost of FCA is to grow the out-ball from (o, to) by running
TDD until either d (the destination) or `o (the first landmark) is settled. Therefore, what
really matters is the order of (number of vertices in) Bo, since the maximum out-degree is 2.
L is chosen randomly by selecting each vertex v to become a landmark independently of other
vertices, with probability ρ ∈ (0, 1). Clearly E {|Bo|} = 1

ρ , and moreover (as a geometrically

distributed random variable), ∀k ≥ 1 ,P {|Bo| > k} = (1− ρ)k ≤ e−ρk. By setting k = ln(1/ρ)
ρ

we conclude that: P
{
|Bo| > ln(1/ρ)

ρ

}
≤ ρ. Since the maximum out-degree is 2, TDD will

relax at most 2k arcs. Hence, for the query-time complexity QFCA of FCA we conclude that
E {QFCA} ∈ O

(
ln(1/ρ)
ρ

)
, and P

{
QFCA ∈ Ω

(
ln2(1/ρ)

ρ

)}
∈ O(ρ).

5. (1 + σ)−Approximate Query Algorithm

In this section we present the Recursive Query Algorithm (RQA) that improves the approx-
imation guarantee of the chosen od−path provided by FCA by exploiting carefully a number
(that we call the recursion budget) of recursive accesses to the preprocessed information, each
of which produces (via a call to FCA) one more candidate od−path soli. The crux of our
approach is the following: We assure that, unless the required approximation guarantee has
already been reached by a candidate solution, the recursion budget must be exhausted and
the sequence of radii of the consecutive balls that we grow recursively is lower-bounded by a
geometrically increasing sequence. Then, we demonstrate that this sequence can only have a
constant number of elements, since the sum of all these radii provides also a lower bound on
the shortest-travel-time that we seek.

A somewhat similar approach was proposed recently for undirected and time-independent
sparse networks [1], in which a number of recursively growing balls (up to the recursion budget)
is used in the vicinities of both the origin and the destination nodes, before eventually applying
a constant-approximation algorithm to close the gap, so as to achieve improved approximation
guarantees. In order for their recursive argument to work, the method in [1] needs to assure
that all the radii of the recursively growing balls are at least as large as the last ball-radius
to be considered by the final recursive call in which the constant-approximation algorithm
is indeed used. This simply provides a good lower bound on the actual origin-destination
distance, along with an acceptable upper bound on the performance of the approximation
algorithm that closes the gap between the discovered prefix-subpath (from the origin) and
suffix-subpath (towards the destination). Growing balls both around the origin and the
destination node is actually crucial for their recursive argument to assure the required lower
bound on the unknown distance.

In our case the network is both directed and time-dependent, and thus one is confronted
with two main challenges: (i) overcoming the asymmetry due to directedness, and (ii) man-
aging carefully time-dependency. In particular, the latter challenge is hard, since we do not

10 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

know the earliest-arrival time td corresponding to the query (o, d, to) so as to start growing
balls from the side of the destination vertex d (actually, td is the sought answer to the query!).

Due to this ignorance of the exact departure time at the destination, it is difficult (if
at all possible) to grow incoming balls in the vicinity of the destination node. Hence, our
only choice is to build a recursive argument that grows outgoing balls in the vicinity of the
origin, since we only know the requested departure-time from it. This is exactly what we
do: as long as we have not discovered the destination node within the explored area around
the origin, and there is still some remaining recursion budget, we “guess” (by exhaustively
searching for it) the next node wk along the (unknown to our algorithm) shortest od−path.
We then grow a new out-ball from the new center (wk, tk = to +D[o, wk](to)), until we reach
the closest landmark-vertex `k to it, at distance Rk = D[wk, `k](tk). This new landmark
offers an alternative od−path solk = Po,k • Qk • Πk by a new application of FCA, where
Po,k ∈ SP [o, wk](to), Qk ∈ SP [wk, `k](tk), and Πk ∈ ASP [`k, d](tk + Rk) is the approximate
suffix subpath provided by the distance oracle. Observe that solk uses a longer (optimal)
prefix-subpath Pk which is then completed with a shorter approximate suffix-subpath Qk •Πk

provided by the preprocessed information kept in the oracle. The pseudocode in Figure 6
provides the details of our approach. Figure 2 provides an overview of RQA’s execution.

5.1. Correctness & Quality. The correctness of RQA implies that the algorithm always
returns some od−path. This is true due to the fact that it either discovers the destination

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx
Figure 2. Overview of
the execution of RQA.

node d as it explores new nodes in the vicinity of the origin node o, or it returns the shortest
of the approximate od−paths sol0, . . . , solr via one of the closest landmark nodes `o, . . . , `r to
“guessed” nodes w0 = o, w1, . . . , wr along the shortest od−path P ∈ SP [o, d](to), where r is
the recursion budget. Based on the fact that the preprocessed time-dependent distance oracle
provides not only approximate distances, but also actual paths from landmarks to vertices
in the graph guaranteeing these distances, it is clear that RQA always returns a connecting
path whose actual delay does not exceed the alleged upper bound on the actual distance.

Our next task is to study the quality of the provided approximation guarantees. Recall
that we are looking for an (1 + σ)−approximation. Then, let δ > 0 be a parameter such that
σ = ε + δ and recall the definition of ψ from Lemma 4.1. The next lemma shows that the
sequence of ball radii grown by the recursive calls of RQA is lower-bounded by a geometrically
increasing sequence.

Lemma 5.1. Let D[o, d](to) = td − to, and suppose that RQA does not discover d or any
landmark wk ∈ SP [o, d](to) ∩ L in the explored area around o. Then, the entire recursion
budget r will be consumed and in each round k ∈ {0, 1, . . . , r} of recursively constructed balls

we have: Rk >
(

1 + ε
ψ

)k · δψ ·(td−to) ∨ ∃i ∈ {0, 1, . . . , k} : D[soli](to) ≤ (1+ε+δ)·D[o, d](to) .

The following theorem proves that RQA provides (1 + σ)−approximations to the actual
distances that should be returned in response to an arbitrary query (o, d, to) ∈ V ×V × [0, T].

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 11

Theorem 5.1. Assume that r =

⌈
ln(1+ ε

δ)
ln
(

1+ ε
ψ

)
⌉
−1, where ψ is the constant in FCA’s approx-

imation guarantee, ε ≥ 0 is the approximation-guarantee of the preprocessed information
kept by the oracle, and δ > 0 is a parameter such that σ = ε + δ. Then, for arbitrary query
(o, d, to) ∈ V ×V ×[0, T], RQA returns an od−path Π such that D[Π](to) ≤ (1+σ)·D[o, d](to).

Proof. If none of the returned via-landmark solutions is a (1 + ε+ δ)−approximation, then:

td − to ≥ R0 +R1 + . . .+Rr
/∗ Lemma 5.1 ∗/

>
δ

ψ
· (td − to) ·

r∑
i=0

(
1 +

ε

ψ

)i

=
δ

ψ
· (td − to) ·

(
1 + ε

ψ

)r+1 − 1

1 + ε
ψ − 1

=
δ

ε
· (td − to) ·

[(
1 +

ε

ψ

)r+1

− 1

]

⇒ ε

δ
>

(
1 +

ε

ψ

)r+1

− 1⇒ r <
ln
(
1 + ε

δ

)
ln
(

1 + ε
ψ

) − 1

Since r ≤ ψ/δ
1−ε/ψ − 1 ∈ O

(
ψ
δ

)
, we have reached a contradiction5. For this value of the

recursion budget RQA either discovers the destination node, or at least a landmark node
that also belongs to SP [o, d](to), or else it returns a via-landmark path that is a (1 + ε +
δ)−approximation of the required shortest od−path. �

Note that for time-independent, undirected-graphs (for which Λmin = Λmax = 0 and ζ =
1) it holds that ψ = 2 + ε. If we additionally equip our oracle with exact rather than
(1 + ε)−approximate landmark-to-vertex distances (i.e., ε = 0), then in order to achieve
σ = δ = 2

t+1 for some positive integer t, our recursion budget r is upper bounded by ψ
δ −1 = t.

This is exactly the amount of recursion required by the approach in [1] to assure the same
approximation guarantee. That is, at its one extreme (Λmin = Λmax = 0, ζ = 1, ψ = 2)
our approach matches the bounds in [1] for the same class of graphs, without the need to
grow balls from both the origin and destination vertices. Moreover, our approach allows for a
smooth transition from static and undirected-graphs to directed-graphs with FIFO arc-delay
functions. Of course, the required recursion budget now depends not only on the targeted
approximation guarantee, but also on the degree of asymmetry (the value of ζ ≥ 1) and the
steepness of the shortest-travel-time functions (the value of Λmax) for the time-dependent
case.

5.2. Complexity. It only remains to determine the query-time complexity QRQA of RQA.
The following theorem provides this remaining query-time complexity.

Theorem 5.2. For sparse networks (i.e., having µ = |A|/|V | ∈ O(1)) the expected running
time of RQA is E {QRQA} ∈ O

((
1
ρ

)r · ln(1
ρ

))
. Moreover, it holds that:

P
{
QRQA ∈ O

((
ln(n)
ρ

)r
·
[
ln ln(n) + ln

(
1
ρ

)])}
∈ 1−O

(
1
n

)
.

Continuing the discussion in the paragraph following Corollary 3.1, we can fine-tune the
parameters σ, r so as to achieve, along with subquadratic space and preprocessing time, a
sublinear query-time complexity E {QRQA} ∈ O

(
n1/(2γ) log(n)

)
, ∀γ > 1

2 . More details (and
examples) are provided in Section F.

5The inequality r ≤ ψ/δ
1−ε/ψ − 1 holds due to the following bound: ∀z ≥ − 1

2
, z − z2 ≤ ln(1 + z) ≤ z.

12 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

6. Conclusions and Future Work

In this work we provide, at least to our knowledge, the first approximate distance oracle for
time-dependent FIFO networks with continuous, pwl arc-delay functions possessing the FIFO
property. Our analysis exploits two quite natural assumptions that allow us to smoothly move
from static and undirected instances to time-dependent and directed ones. Our construction
works well for sparse graphs. It would be interesting to consider approximate distance oracles
for special network classes that often appear in practice, such as planar graphs.

References

[1] Rachit Agarwal and Philip Godfrey. Distance oracles for stretch less than 2. In Proceedings of the 24th
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’13), pages 526–538. ACM-SIAM, 2013.

[2] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders. Time-Dependent Contraction
Hierarchies and Approximation. In Paola Festa, editor, Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes in Computer Science, pages 166–177.
Springer, May 2010.

[3] K. Cooke and E. Halsey. The shortest route through a network with time-dependent intermodal transit
times. Journal of Mathematical Analysis and Applications, 14(3):493–498, 1966.

[4] Brian C. Dean. Continuous-time dynamic shortest path algorithms. Master’s thesis, Massachusetts Insti-
tute of Technology, 1999.

[5] Brian C. Dean. Algorithms for minimum-cost paths in time-dependent networks with waiting policies.
Networks, 44(1):41–46, 2004.

[6] Brian C. Dean. Shortest paths in fifo time-dependent networks: Theory and algorithms. Technical report,
MIT, 2004.

[7] Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, May 2011. Special Issue:
European Symposium on Algorithms 2008.

[8] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Ravindra K. Ahuja, Rolf H.
Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of
Lecture Notes in Computer Science, pages 207–230. Springer, 2009.

[9] Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395–412,
1969.

[10] eCOMPASS Project (2011-2014). http://www.ecompass-project.eu.
[11] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of time-dependent shortest paths.

In Proc. of 22nd ACM-SIAM Symp. on Discr. Alg. (SODA ’11), pages 327–341. ACM-SIAM, 2011.
[12] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidirectional A* Search on Time-

Dependent Road Networks. Networks, 59:240–251, 2012. Journal version of WEA’08.
[13] Ariel Orda and Raphael Rom. Shortest-path and minimum delay algorithms in networks with time-

dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.
[14] Mihai Patrascu and Liam Roditty. Distance oracles beyond the Thorup–Zwick bound. In Proc. of 51th

IEEE Symp. on Found. of Comp. Sci. (FOCS ’10), pages 815–823, 2010.
[15] Ely Porat and Liam Roditty. Preprocess, set, query! In Proc. of 19th Eur. Symp. on Alg. (ESA ’11),

LNCS 6942, pages 603–614. Springer, 2011.
[16] Christian Sommer. Shortest-path queries in static networks, 2012. submitted.
[17] Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In Proc. of 50th IEEE

Symp. on Found. of Comp. Sci. (FOCS ’09), pages 703–712, 2009.
[18] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. of ACM, 52:124, 2005.
[19] C. Wulff-Nilsen. Approximate distance oracles with improved preprocessing time. In Proc. of 23rd ACM-

SIAM Symp. on Discr. Alg. (SODA ’12), 2012.
[20] C. Wulff-Nilsen. Approximate distance oracles with improved query time. arXiv abs/1202.2336., 2012.

Appendix A. Missing proofs of Section 2

The properties stated in Lemmata 2.1, 2.2, and 2.3 are (perhaps) more-or-less known. We
provide their proofs here for the sake of completeness.

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 13

A.1. Proof of Lemma 2.1. Observe that, by the FIFO property: ∀a ∈ A,∀tu ∈ R, ∀δ > 0,

Arr[a](tu) ≤ Arr[a](tu + δ)⇔ tu +D[a](tu) ≤ tu + δ +D[a](tu + δ)
/∗ δ>0 ∗/⇔ D[a](tu + δ)−D[a](tu)

δ
≥ −1

This immediately implies that the left and right derivatives of D[a] are lower bounded (strictly,
in case of strict FIFO property) by −1.

�

A.2. Proof of Lemma 2.2. The explanation for the FIFO property on an arbitrary path
p in G is provided by a simple inductive argument on the prefixes of p, based on a recursive
definition of path-arrival-time functions. For a path (represented as a sequence of arcs)
p = 〈a1, · · · ak〉 ∈ Po,d and ∀1 ≤ i ≤ j ≤ k, let pi,j be the subpath of p starting with the ith

arc ai and ending with the jth arc aj in order. Then:

Arr[p1,k](to) = to +D[p1,k](to) = to +D[p1,1](to)︸ ︷︷ ︸
=Arr[p1,1](to)

+D[p2,k](to +D[p1,1](to))(2)

= Arr[p2,k] (Arr[p1,1](to)) = (Arr[p2,k] ◦Arr[p1,1]) (to) = · · ·
= (Arr[ak] ◦ · · · ◦Arr[a1]) (to)

The composition of non-decreasing (increasing) functions is well known to also be non-
decreasing (increasing). As for the earliest-arrival-time functionArr[o, d] = minp∈Po,d {Arr[p]},
as a minimization operation over non-decreasing (increasing) functions, it is also itself a non-
decreasing (increasing) function of departure-time from o.

�

A.3. Proof of Lemma 2.3. Let t∗x = Arr[p∗u x](tu). For sake of contradiction, assume that
∃q ∈ Px,y : D[q](t∗x) < D[q∗](t∗x) . Then, p = p∗u x • q • p∗y v suffers smaller delay than p∗

for departure time tu. Indeed, let ty ≡ t∗x + D[q](t∗x) and t∗y ≡ t∗x + D[p∗x y](t∗x). Due to the
alleged suboptimality of p∗x y when departing at time t∗x, it holds that ty < t∗y. Then:

Arr[p](tu) = tu +D[p](tu)
= tu +D[p∗u x](tu)︸ ︷︷ ︸

=t∗x

+D[q](t∗x) +D[p∗y v](t
∗
x +D[q](t∗x))

= t∗x +D[q](t∗x)︸ ︷︷ ︸
=ty

+D[p∗y v](t
∗
x +D[q](t∗x)) = ty +D[p∗y v](ty)

< t∗y +D[p∗y v](t
∗
y) = Arr[p∗](tu)

violating the optimality of p∗ for the given departure-time tu (the inequality is due to the
strict FIFO property of the suffix-subpath p∗y v).

�

Appendix B. Boundedness of Out-Degrees

Our focus in this work is on sparse networks, in which µ = m
n ∈ O(1). Moreover, we

need to guarantee also that the out-degree of every node is bounded by a constant (say, at
most 2). This will be crucial for the query-time complexity of our approximation algorithms
for arbitrary origin-destination pairs. Indeed, it is not hard to assure that the maximum
out-degree is 2, by using an equivalent network of at most double size (number of vertices
and number of arcs). This is achieved by substituting every vertex of the original graph
(V,A) with out-degree greater than 2 with a complete binary tree whose leaf-edges are indeed
the outgoing edges from v in (V,A), and each internal level consists of a maximal number

14 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

of nodes with two children from the lower level, until a 1-node level is reached. This root
node inherits all the incoming arcs from v in the original graph. All the newly inserted arcs
(except for the original arcs outgoing from v) get zero delay functions. Figure 3 demonstrates
an example of such a substitution. For each node v ∈ G : d+(v) > 2, the node substitution

0

0
0v

x2

x3

x1

u1

u2

u3

u4

u5

Figure 3. The node substitution operation for a ver-
tex v ∈ V with out-degree d+

G(v) = 5. The operation as-
sures an out-degree at most 2 for all the newly inserted
vertices in place of v in the graph. The new graph el-
ements (nodes and arcs) are indicated by dashed (red)
lines. The solid (black) arcs and vertices are the ones
pre-existing in the graph.

operation is executed in time O(d+(v)) and introduces d+(v)−1 new nodes and d+(v)−2 new
arcs (of zero delays). Therefore, in time O(|A|) we can assure out-degree at most 2 and the
same time-dependent travel-time characteristics, by at most doubling the size of the graph
(
∑

v∈V :d+(v)>2(d+(v)− 1) < |A| new nodes and
∑

v∈V :d+(v)>2(d+(v)− 2) < |A| new arcs).

Appendix C. Detailed presentation of the preprocessing phase

We start by providing a closed form for the maximum absolute error between the upper-
approximating and the lower-approximating functions of a generic shortest-travel-time func-
tion D within a time interval [c, d] ⊆ [0, T]6.

Lemma C.1. For [c, d] ⊆ [0, T], fix an unknown but amenable to polynomial-time sampling
continuous (not necessarily pwl) concave function D : [c, d]→ R>0, with right and left deriva-
tives at the endpoints denoted by Λ+(c),Λ−(d). Assume that Λ+(c) > Λ−(d) and L = d− c >
0. Let m = D(d)−D(c)+c·Λ+(c)−d·Λ−(d)

Λ+(c)−Λ−(d)
and Dm = Λ+(c) · (m − c) + D(c). Consider the affine

function D passing via the points (c,D(c)), (d,D(d)). Consider also the pwl function D with
three breakpoints (c,D(c)), (m,Dm), (d,D(d)). Then ∀t ∈ [c, d], D(t) ≤ D(t) ≤ D(t) and the
maximum absolute error between D and D in [c, d] is at most:

MAE(c, d) = (Λ+(c)− Λ−(d)) · (m− c) · (d−m)
L

≤ L · (Λ+(c)− Λ−(d))
4

.

Proof. Consider the affine functions (see also figure 4):

y(x) = D(d)−D(c)
L · x+ D(c)d−D(d)c

L ,

yc(x) = Λ+(c) · (x− c) +D(c) ,

yd(x) = Λ−(d) · (x− d) +D(d) .

The point
(
m = D(d)−D(c)+c·Λ+(c)−d·Λ−(d)

Λ+(c)−Λ−(d)
, Dm = yc(m) = yd(m)

)
is the intersection point of

the lines yc(x) and yd(x). As an upper-bounding (pwl) function of D in [c, d] we consider
D(t) = min{yc(t), yd(t)}, whereas the lower-bounding (affine) function of D is D(t) = y(t).

By concavity and continuity of D, we know that the partial derivatives’ values may only
decrease with time, and at any given point in [c, d] the left-derivative value is at least as large
as the right-derivative value. Thus, the restriction of D on [c, d] lies entirely in the area of

6In this section the variables c, d denote departure times for the generic shortest-travel-time function D,
which we wish to approximate. In particular, d has nothing to do with a destination vertex, but is only a
departure-time from the origin of D, just like c.

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 15

c d

D(c)

Dmax = D(d)

Λ- (d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(a) Λ+(c) > Λ-(d) ≥ 0

c d

D(c)

D(d)

Dmax

Λ -(d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(b) Λ+(c) > 0 > Λ-(d)

c d

Dmax = D(c)

D(d)

y(m)
Λ -(d) (x-d) + D(d)

m

Λ+(c) (x-c) + D(c)

(c) 0 ≥ Λ+(c) > Λ-(d)

Dm

Dm

Dm

Figure 4. Three distinct cases for upper-bounding the absolute error be-
tween two consecutive interpolation points. The maximum absolute error
(MAE) considered is shown by the vertical (purple) line segment at point
m of the time axis.

the triangle {(c,D(c)), (m,Dm), (d,D(d))}. The maximum possible distance (additive error)
of D from D is:

MAE(c, d) = max
c≤t≤d

{D(t)−D(t)}
This value is at most equal to the vertical distance of the two approximation functions,
namely, at most equal to the length of the line segment connecting the points (m, y(m)) and
(m,Dm)(denoted by purple color in figure 4). The calculations are identical for the three
distinct cases shown in figure 4. Let Λ = D(d)−D(c)

L be the slope of the line y(x). Observe
that:

Λ =
D(d)−D(c)

L
=

(Dm −D(c))− (Dm −D(d))
L

=
m− c
L
· Dm −D(c)

m− c − d−m
L
· Dm −D(d)

d−m
=

m− c
L
· Λ+(c) +

d−m
L
· Λ−(d) .

Thus we have:

MAE(c, d) = Dm − y(m) = (Dm −D(c))− (y(m)−D(c))
= Λ+(c) · (m− c)− Λ · (m− c) = (Λ+(c)− Λ) · (m− c)
= (Λ+(c)− Λ−(d)) · (m− c) · (d−m)

L
≤ L · (Λ+(c)− Λ−(d))

4
,

since (m − c) + (d − m) = d − c = L and the product (m − c) · (d − m) is maximized at
m = c+d

2 . �
We now proceed by presenting our polynomial-time algorithm which provides asymptoti-

cally space-optimal succinct representations of one-to-all (1 + ε)−approximating funnctions
D[`, ?] = (D[`, v])v∈V of D[`, ?] = (D[`, v])v∈V , for a given landmark ` ∈ L and all destinations
v ∈ V . Recall our Assumption 2.1 concerning the boundedness of the shortest-travel-time
function slopes. Given this assumption, we are able to construct a generalization of the bi-
section method proposed in [11] for point-to-point approximations of distance functions, to
the case of a single-origin ` and all reachable destinations from it. Our method (we call it
SO BISECT) computes concurrently (i.e., within the same bisection) all the required break-
points to describe the (pwl) lower-approximating functions D[`, ?] = (D[`, v])v∈V , and finally,
via a linear scan of it, the upper-approximating functions D[`, ?] =

(
D[`, v]

)
v∈V . This is

16 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

possible because the bisection is done on the (common for all travel-time functions to approx-
imate) axis of departure-times from the origin `. The other crucial observation is that for each
destination vertex v ∈ V we keep as breakpoints of D[`, v] only those sample points which are
indeed necessary for the required approximation guarantee per particular vertex, thus achiev-
ing an asymptotically optimal space-complexity of our method, as we shall explain in the
analysis of our approach. This is possible due to the fact that we have an exact expression for
the evaluation of the (worst-case) approximation error between the lower-approximating and
the upper-approximating distance function per destination vertex (cf. Lemma C.1). More-
over, all the delays to be sampled at a particular bisection point t` ∈ [0, T] are calculated by
a single time-dependent shortest-path-tree (e.g., TDD) execution for (`, t`).

The algorithm proceeds as follows: For any subinterval [ts, tf] ⊆ [0, T] we split the desti-
nation vertices into active, i.e., the ones for which the desired value ε ·Dmin[`, v](ts, tf) of the
maximum absolute error within [ts, tf] has not been reached yet, and the remaining inactive
vertices7. As long as there is at least one active destination vertex for the interval [ts, tf], we

split it in the middle, and recur our bisection on the subintervals
[
ts,

ts+tf
2

] [
ts+tf

2 , tf

]
. The

bisection point is stored as a breakpoints only of the lists LBP [`, v] of still active vertices
v for [ts, tf]. The inactive vertices of [ts, tf] just skip this point. The bisection procedure
is terminated as soon as all vertices have become inactive. Apart from the list LBP [`, v]
of breakpoints for D[`, v], a linear scan of this list allows also the construction of the list
UBP [`, v] of the required breakpoints for D[`, v] (cf. Lemma C.1).

The time-complexity and space-complexity of the preprocessing phase are provided in Theo-
rem 3.1, whose proof is given in the following subsection. In what follows, L[`, v] = |LBP [`, v]|
is the number of breakpoints for D[`, v], U [`, v] = |UBP [`, v]| is the number of breakpoints
for D[`, v] and, finally, U∗[`, v] is the minimum number of breakpoints of any (1 + ε)−upper
approximating function of D[`, v], within the time-interval [0, T].

C.1. Proof of Theorem 3.1. The time complexity of SO BISECT will be asymptotically
equal to that of the worst-case point-to-point bisection from ` to some destination vertex v. In
particular, SO BISECT concurrently computes the new breakpoints for the lower-bounding
approximate distance functions of all the active nodes, within the same TDD-run. This is
because the departure-time axis is common for all the shortest-travel-time functions from the
common origin `. Moreover, due to being able to (exactly) calculate the worst-case maximum
absolute error per destination vertex in each interval of the bisection, the algorithm is able
to deactivate (and thus, stop producing breakpoints for) those vertices which have already
reached the required approximation guarantee. The already deactivated node will remain so
until the end of the algorithm. Nevertheless, the bisection continues as long as there exists
at least one active destination vertex.
Number of breakpoints produced by SO BISECT. The initial departure-times interval to
bisect is [0, T]. Assume that we are currently at an initial interval [ts, tf] ⊆ [0, T], of length
tf − ts. A new bisection halves this subinterval and creates new breakpoints at ts+tf

2 , one for
each vertex that remains active. Thus, at the k−th level of the recursion tree all the subinter-
vals have length L(k) = T/2k. Since for any shortest-travel-time function and any subinterval
[ts, tf] of departure-times from ` it holds that 0 ≤ Λ+[`, v](ts) − Λ−[`, v](tf) ≤ Λmax + 1 (cf.
Assumption 2.1), the absolute error between D[`, v] and D[`, v] in this interval is at most
L(k)·(Λmax+1)

4 ≤ T ·(Λmax+1)
2k+2 . This implies that the bisection will certainly stop at a level kmax

of the recursion tree at which for any subinterval [ts, tf] ⊆ [0, T] and any destination vertex

7Dmin[`, v](ts, tf) = mint∈[ts,tf]{D[`, v](t)} = min{D[`, v](ts), D[`, v](tf)}, due to concavity of D[`, v] in

[ts, tf]. Similarly, Dmax[`, v](ts, tf) = maxt∈[ts,tf]{D[`, v](t)}.

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 17

v ∈ V the following holds:

MAE[`, v](ts, tf) ≤ T · (Λmax + 1)
2kmax+2

≤ εDmin[`, v](ts, tf) ≤ εDmin[`, v](0, T)

From this we conclude that setting

kmax = max
v∈V

{⌈
log2

(
T · (Λmax + 1)
εDmin[`, v](0, T)

)⌉}
− 2

is a safe upper bound on the depth of the recursion tree.
On the other hand, observe that the parents of the leaves in the recursion tree correspond to

subintervals [ts, tf] ⊂ [0, T] for which the absolute error of at least one vertex v ∈ V is greater
than εDmin[`, v](ts, tf), indicating that (in worst case) no pwl (1 + ε)−approximation may
avoid placing at least one interpolation point in this subinterval. Therefore, the proposed
bisection method SO BISECT produces at most twice as many interpolation points (to
determine the lower-approximating vector function D[`, ?]) required for any (1 + ε)-upper-
approximation of D[`, ?]. But, as suggested in [11], by taking as breakpoints the (at most two)
intersections of the horizontal lines (1+ε)j ·Dmin[`, v](0, T) with the (unkown) function D[`, v],
one would guarantee the following upper bound on the minimum number of breakpoints for
any (1 + ε)−approximation of D[`, v] within [0, T]:

U∗[`, v] ≤
⌈

log1+ε

(
Dmax[`, v](0, T)
Dmin[`, v](0, T)

)⌉
−1

Therefore, ∀v ∈ V it holds that:

L[`, v] ≤ 2 · log1+ε

(
Dmax[`, v](0, T)
Dmin[`, v](0, T)

)
The produced list UBP [`, v] of breakpoints for the (1 + ε)-upper-approximation D[`, v] pro-
duced by SO BISECT uses at most one extra breakpoint for each pair of consecutive break-
points in LBP [`, v] for D[`, v]. Therefore, ∀v ∈ V :

(3) U [`, v] ≤ 4 · log1+ε

(
Dmax[`, v](0, T)
Dmin[`, v](0, T)

)
∈ O

(
1
ε

log
(
Dmax[`, v](0, T)
Dmin[`, v](0, T)

))
.

We now proceed with the time-complexity of SO BISECT. We shall count the number
TDP of time-dependent shortest-path (TDSP) probes (e.g., TDD runs) to compute all the
candidate breakpoints during the entire bisection. The crucial observation is that the bisection
is applied on the common departure-time axis: In each recursive call from [c, d], all the new
breakpoints at the new departure-time tmid = c+d

2 , to be added to the breakpoint lists of the
active vertices, are computed by a single (forward) TDSP-probe. Moreover, for each vertex
v, every breakpoint of LBP [`, v](0, T) requires a number of (forward) TDSP-probes that is
upper bounded by the path-length leading to the consideration of this point for bisection,
in the recursion tree. Any root-to-node path in this tree has length at most kmax, therefore
each breakpoint of LBP [`, v](0, T) requires at most kmax TDSP-probes, to be computed. In
overall, the total number TDP of TDSP probes required to construct LBP [`, ?](0, T), is
upper-bounded by the following inequality:

TDP ≤ kmax ·max
v∈V
|LBP [`, v](0, T)|

∈ O
(

max
v∈V

{⌈
log
(
T · (Λmax + 1)
εDmin[`, v](0, T)

)⌉}
· 1
ε
·max
v∈V

{
log
(
Dmax[`, v](0, T)
Dmin[`, v](0, T)

)})
(4)

forward TDSP-probes. We can also construct UBP [`, ?](0, T) from LBP [`, ?](0, T) without
any execution of a TDSP-probe, by just sweeping once for every vertex v ∈ V LBP [`, v](0, T)

18 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

and adding all the intermediate breakpoints required. The time-complexity of this proce-
dure is O(|LBP [`, ?](0, T)|) and this is clearly dominated by the time-complexity (number of
TDSP-probes) for constructing LBP [`, ?](0, T) itself.

�

Appendix D. Missing Proofs of Section 4

D.1. Proof of Lemma 4.1. In case that d ∈ Bo, there is nothing to prove since FCA
returns the exact distance. So, assume that d /∈ Bo, implying that D[o, d](to) ≥ Ro. As for
the returned distance value Ro + ∆[`o, d](to + Ro), it is not hard to see that this is indeed
an overestimation of the actual distance D[o, d](to). This is because ∆[`o, d](to + Ro) is an
overestimation (implying also a connecting `od−path) of D[`o, d](to + Ro), and of course
Ro = D[o, `o](to) corresponds to a (shortest) o`o−path that was discovered by the algorithm
on the fly. Therefore, Ro + ∆[`o, d](to + Ro) is an overestimation of an actual od−path for
departure time to, and cannot be less than D[o, d](to). We now prove that it is not arbitrarily
larger than this shortest distance:

Ro + ∆[`o, d](to +Ro) ≤ Ro + (1 + ε)D[`o, d](to +Ro)
/∗ triangle ∗/
≤ Ro + (1 + ε)[D[`o, o](to +Ro) +D[o, d](to +Ro +D[`o, o](to +Ro))]

/∗ Assumption 2.1 ∗/
≤ Ro + (1 + ε)[(1 + Λmax)D[`o, o](to +Ro) + ΛmaxRo +D[o, d](to)]

/∗ Assumption 2.2 ∗/
≤ Ro + (1 + ε)[(1 + Λmax)ζD[o, `o](to +Ro) + ΛmaxRo +D[o, d](to)]

/∗ Assumption 2.1 ∗/
≤ Ro + (1 + ε)[(1 + Λmax)ζ(Ro + ΛmaxRo) + ΛmaxRo +D[o, d](to)]
=

[
1 + (1 + ε)(1 + Λmax)2ζ + (1 + ε)Λmax

] ·R0 + (1 + ε) ·D[o, d](to)
= [1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ]︸ ︷︷ ︸

=ψ

·R0 + (1 + ε) ·D[o, d](to)

= (1 + ε) ·D[o, d](to) + ψ ·Ro
�

Appendix E. Missing Proofs of Section 5

E.1. Proof of Lemma 5.1. So long as none of the discovered nodes o = w0, w1, . . . , wk
is a landmark node and the recursion budget has not been consumed yet, RQA continues
guessing new nodes of P ∈ SP [o, d](to). If any of these nodes (say, wk) is a landmark node,
the (1 + ε)−approximate solution P0,k •Π[wk, d](tk) is returned and we are done. Otherwise,
RQA will certainly have to consume the entire recursion budget.

Moreover, for any k ∈ {0, 1, . . . , r}, if ∃i ∈ {0, 1, . . . , k} : D[soli](to) ≤ (1+ε+δ) ·D[o, d](to)
then there is nothing to prove from that point on. The required disjunction trivially holds
for all rounds k, k+ 1, . . . , r. We therefore consider the case in which up to round k−1 of the
recursion no good approximation has been discovered, and we shall prove inductively that

either solk is a (1 + ε+ δ)− approximation, or else Rk >
(

1 + ε
ψ

)k · δψ · (td − to).
BASIS: Recall that FCA is used to provide the suffix-subpath of the returned solution
sol0, whose prefix (from o to `o) is indeed a shortest path. Therefore:

D[sol0](to) ≤ R0 + ∆[`0, d](to +R0)
/∗ Lemma 4.1 ∗/

≤ (1 + ε) ·D[o, d](to) + ψ ·R0 =
(

1 + ε+
ψR0

td − to

)
· (td − to)

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 19

Clearly, either ψR0

td−to ≤ δ ⇔ R0 ≤ δ
ψ · (td − to), which then implies that we already

have a (1 + ε+ δ)−approximate solution, or else it holds that R0 >
δ
ψ · (td − to).

HYPOTHESIS: We assume inductively that ∀0 ≤ i ≤ k, no (1 + ε+ δ)−approximate

solution has been discovered up to round k, and thus holds that Ri >
(

1 + δ
ψ

)i · δψ ·
(td − to).
STEP: We prove that for the (k + 1)−st recursive call, either the new via-landmark
solution solk+1 = P0,k+1 • Qk+1 • Πk+1 (see figures 6 and 2 for explanation of the

notation) is a (1+ε+δ)−approximate solution, or else Rk+1 >
(

1 + δ
ψ

)k+1 · δψ ·(td−to).
For the travel-time along this path we have:

D[solk+1](to)
≤ tk+1 − to +Rk+1 + ∆[`k+1, d](tk+1 +Rk+1)

/∗ Lemma 4.1 ∗/
≤ tk+1 − to + (1 + ε) ·D[wk+1, d](tk+1) + ψ ·Rk+1

/∗ wk+1∈SP [o,d](to) ∗/
= tk+1 − to + (1 + ε) · (td − tk+1) + ψ ·Rk+1

= (1 + ε) · (td − to)− ε · (tk+1 − to) + ψ ·Rk+1

/∗ tk+1−to≥R0+...+Rk ∗/
≤ (1 + ε) · (td − to)− ε · (R0 + . . .+Rk) + ψ ·Rk+1

/∗ Ind. Hypothesis ∗/
< (1 + ε) · (td − to)− ε ·

k∑
i=0

(
1 +

ε

ψ

)i
· δ
ψ
· (td − to) + ψ ·Rk+1

=

(
1 + ε− εδ

ψ
·
k∑
i=0

(
1 +

ε

ψ

)i
+
ψ ·Rk+1

td − to

)
· (td − to)

=

(
1 + ε− δ ·

[(
1 +

ε

ψ

)k+1

− 1

]
+
ψ ·Rk+1

td − to

)
· (td − to)

Once more, it is clear that either D[solk+1](to) ≤ (1 + ε + δ) · D[o, d](to), or else it

must hold that Rk+1 >
(

1 + ε
ψ

)k+1 · δψ · (td − to) as required.

�

E.2. Proof of Theorem 5.2. Recall that for any vertex w ∈ V and any departure-time
tw ∈ [0, T], the size of the outgoing TDD−ball Bw = B[w](tw) centered at (w, tw) until
the first landmark vertex is settled, behaves as a geometric random variable with success
probability ρ ∈ (0, 1). Thus, E {|Bw|} = 1

ρ and ∀β ∈ N, P {|Bw| > β} ≤ exp(−ρ · β). By
applying the trivial union bound, one can then deduce that:

∀W ⊆ V,P {∃w ∈W : |Bw| > β} ≤ |W | exp(−ρβ) = exp (−ρβ + ln(|W |))
Assume now that we somehow could guess an upper bound β∗ on the number of vertices

in every ball grown by an execution of RQA. Then, since the out-degree is upper bounded
by 2, we know that the boundary ∂B of each ball B will have size |∂B| ≤ 2|B|. This in
turn implies that the branching tree that is grown in order to implement the “guessing”
of step 7.1 in RQA (cf. figure 6) via exhaustive search, would be bounded by a complete
(2β∗)−ary tree of depth r − 1. For each node in this branching tree we have to grow a new
TDD−ball outgoing from the corresponding center, until a landmark vertex is settled. The
size of this ball will once more be upper-bounded by β∗. Due to the fact that the out-degree
is bounded by 2, at most 2β∗ arcs will be relaxed. Therefore, the running time of growing
each ball is O(β∗ ln(β∗)). At the end of each TDD execution, we query the oracle for the

20 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

distance of the newly discovered landmark to the destination node. This will have a cost of
O(log log((K∗ + 1) · U)), where U is the maximum number of required breakpoints between
two concavity-spoiling arc-delay breakpoints in the network, since all the breakpoints of the
corresponding shortest-travel-time function are assumed to be organized in a predecessor-
search data structure. The overall query-time complexity of RQA would thus be bounded as
follows:

QRQA ≤ (2β∗)r − 1
2β∗ − 1

· O(β∗ ln(β∗) + log log((K∗ + 1) · U))

∈ O((β∗)r ln(β∗) + βr−1 log log((K∗ + 1) · U)
)

Assuming that log log((K∗ + 1) · U) ∈ O(β∗ log(β∗)), we have that QRQA ∈ O((β∗)r ln(β∗)) .
If we are only interested on the expected running time of the algorithm, then each ball has
expected size O

(
1
ρ

)
and thus E {QRQA} ∈ O

((
1
ρ

)r
ln
(

1
ρ

))
.

In general, if we set β∗ = r ln(n)
ρ , then we know that RQA will grow |W | ∈ O

((
r ln(n)
ρ

)r−1
)

balls, and therefore:

P
{
∀w ∈W, |Bw| ≤ r ln(n)

ρ

}
≥ 1− exp

(
−ρr ln(n)

ρ
+ (r − 1) · [ln ln(n) + ln(1/ρ)]

)
∈ 1−O

(
1
|V |
)

Thus, we conclude that:

P
{
QRQA ∈ O

((
ln(n)
ρ

)r
·
[
ln ln(n) + ln

(
1
ρ

)])}
∈ 1−O

(
1
n

)
.

�

Appendix F. Preprocessing-Space-Query Time Tradeoffs of Our Oracle

In this section we demonstrate the tradeoffs achieved by our oracle among the expected pre-
processing time E {P}, the required space E {S}, and the query-time complexity E {QRQA}
respectively. Let U = max`,v U [`, v] = max`,v |UBP [`, v]|, and recall that TDP is the max-
imum number of forward TDSP probes required for computing the preprocessed data for a
particular landmark vertex (cf. Theorem 3.1).

Table 1 summarizes some characteristic examples of the trade-offs. The first two rows
present the two extremes of our oracle: the first with all-to-all preprocessing and the second
with no preprocessing at all. From the third row on we provide demonstrating examples of
the main results in this paper.

Since U and TDP are independent of the network size n, we consider them as constants
from the fourth row on. Similarly, Kmax which denotes the maximum number of breakpoints
of an arc-travel-time function in the network (which is part of the input) is also considered to
be independent of the network size. But even if it was the case that Kmax ∈ Θ(K), this would
only have a doubly-logarithmic multiplicative effect in the preprocessing-time and query-time
complexities, which is indeed acceptable.

Regarding the number K∗ of concavity-spoiling breakpoints of arc-travel-time functions, if
all arc-travel-time functions are concave, i.e., K∗ = 0, then we clearly achieve subquadratic
preprocessing space and time for any ρ ∈ O(n−α), where 0 < α < 1. Real data (e.g., Tom-
Tom’s traffic data for the city of Berlin [10]) demonstrate that: (i) only a small fraction
of the arc-travel-time functions exhibit non-constant behavior; (ii) for the vast majority of
these non-constant-delay arcs, the arc-travel-time functions are either concave, or can be very
tightly approximated by a typical concave bell-shaped pwl function. It is only a tiny subset

DISTANCE ORACLES FOR TIME-DEPENDENT NETWORKS 21

of critical arcs (e.g., bottleneck-segments in a large city) for which it would be indeed mean-
ingful to consider also non-concave behavior. Therefore, K∗ ∈ o(n) is the typical case, and
indeed, assuming e.g., K∗ ∈ O(polylog(n)), we can easily fine-tune ρ and the parameters σ, r
(cf. Section 5) so as to achieve subquadratic preprocessing space and time. In particular, for
K∗ ∈ O(log(n)) and ∀γ > 1

2 , E {S} ∈ O(n2−ε/(γψ) log(n)
)

and E {P} ∈ O(n2−ε/(γψ) log2(n)
)
,

along with sublinear query-time complexity E {QRQA} ∈ O
(
n1/(2γ) log(n)

)
,∀γ > 1

2 . Recall
that ψ = ψ(ζ,Λmax) is a constant that is specified in Lemma 4.1.

The constant γ is only used to demonstrate the trade-off between subquadratic prepro-
cessing space and time on one hand, and the sublinear query time on the other hand. Case
1 allows only a slight deterioration of the approximation guarantee provided by the prepro-
cessed data (from 1+ε to 1+2ε). Case 2 considers a more severe deterioration in the accuracy
of the query algorithm (from 1 + ε to 1 + 10ε).

what is preprocessed E {S} E {P} E {QRQA}

All-To-All O((K∗ + 1)n2U
) O

 n2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O(log log(U))

Nothing O(n+m+K) O(1) O
(

n log(n)·
log log(Kmax)

)
Landmarks-To-All O(ρn2(K∗ + 1)U

) O
 ρn2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O
((

1
ρ

)r · log
(

1
ρ

)
· log log(Kmax)

)
Kmax ∈ O(1)
U, TDP ∈ O(1)
K∗ ∈ O(log(n))

O(ρn2 log(n)
) O(ρn2 log2(n)

) O
((

1
ρ

)r
log
(

1
ρ

))

1.

γ > 1 + ε
ψ

ρ = n−ε/(γψ)

σ = 2ε
⇒ r ≤ ψ

ε + 1

O(n2−ε/(γψ) log(n)
) O(n2−ε/(γψ) log2(n)

) O(n1/γ+ε/(γψ) log(n)
)

2.

γ > 1
2

ρ = n−ε/(γψ)

σ = 10ε
⇒ r ≤ ψ

2ε

O(n2−ε/(γψ) log(n)
) O(n2−ε/(γψ) log2(n)

) O(n1/(2γ) log(n)
)

Table 1. List of trade-off examples of the proposed distance oracle, for a given
approximation guarantee 1 + ε for preprocessed data. For sake of comparison,
also the two extremes of the oracle are provided, with all-to-all preprocessing,
and no preprocessing at all.

22 SPYROS KONTOGIANNIS AND CHRISTOS ZAROLIAGIS

Appendix G. Pseudocodes of proposed algorithms

In this section we provide the pseudocodes for the query-response algorithms FCA and
RQA proposed in this work.

FCA(o, d, to)
1. if o ∈ L then return (∆[o, d](to)) /∗ (1 + ε)−approximate answer ∗/
2. Bo = B[o](to) := { x ∈ V : D[o, x](to) < min`∈L{D[o, `](to)} } /∗ TDD−run till `o is settled ∗/
3. `o = `[o](to) ∈ arg min`∈L{D[o, `](to)}; Ro = D[o, `o](to)
4. if d ∈ Bo then return (D[o, d](to)) /∗ exact answer ∗/
5. return (Ro + ∆[`o, d](to +Ro)) /∗ (1 + ε+ ψ)−approximate answer ∗/

Figure 5. The pseudocode describing FCA.

RQA(o, d, to, r)
1. if {o, d} ∩ L 6= ∅
2. then return (ASP [o, d](to),∆[o, d](to)) /∗ (1 + ε)−approximate answer ∗/
3. B0 = B[o](to) := {x ∈ V : D[o, x](to) < min`∈L{D[o, `](to)}} /∗ TDD−run till `o is settled ∗/
4. `0 ∈ arg min`∈L {D[o, `](to)} ; R0 = D[o, `0](to)
5. sol0 = (Q0 •Π0 , ∆[sol0](to) = R0 + ∆[`0, d](to +R0)) /∗ approximate answer via `o ∗/
6. k := 0; tk = to;
7. while k < r do
7.1. “guess” the first vertex wk+1 out of Bk on SP [wk, d](tk) /∗ exhaustive search ∗/
7.2. tk+1 = tk +D[wk, wk+1](tk);
7.3. if wk+1 ∈ L
7.4. then return (P0,k+1 •Π[wk+1, d](tk+1), tk+1 − t0 + ∆[wk+1, d](tk+1))

/∗ approximate answer via wk+1 ∗/
7.5. Bk+1 = B[wk+1](tk+1) := {x ∈ V : D[wk+1, x](tk+1) < min`∈L{D[wk+1, `](tk+1)}}
7.6. `k+1 ∈ arg min`∈L {D[wk+1, `](tk+1)} ; Rk+1 = D[wk+1, `k+1](tk+1)

7.7. solk+1 =
(

P0,k+1 •Qk+1 •Πk+1,
∆[solk+1](to) = tk+1 − to +Rk+1 + ∆[`k+1, d](tk+1 +Rk+1)

)
/∗ approximate answer via `k+1 ∗/

7.8. k = k + 1
8. endwhile
9. return min0≤k≤r {solk}

Figure 6. The recursive algorithm RQA providing (1 + σ)−approximate
time-dependent shortest paths. Qk ∈ SP [wk, `k](tk) is the shortest path
connecting wk to its closest landmark w.r.t. departure-time tk. P0,k ∈
SP [o, wk](to) is the prefix of the shortest od−path that has been already
discovered, up to vertex wk. Πk = ASP [`k, d](tk + Rk) denotes the (1 +
ε)−approximate shortest `kd−path precomputed by the oracle.

S. Kontogiannis: Computer Science & Engineering Department, Dourouti University Campus,
45110 Ioannina, GREECE.

C. Zaroliagis: Computer Engineering & Informatics Department, University of Patras, 26504
Rion, GREECE.

E-mail address: kontog@cs.uoi.gr and zaro@ceid.upatras.gr

